Abstract
Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aas M., Bremer J. Short-chain fatty acid activation in rat liver. A new assay procedure for the enzymes and studies on their intracellular localization. Biochim Biophys Acta. 1968 Oct 22;164(2):157–166. doi: 10.1016/0005-2760(68)90142-2. [DOI] [PubMed] [Google Scholar]
- Aas M. Organ and subcellular distribution of fatty acid activating enzymes in the rat. Biochim Biophys Acta. 1971 Feb 2;231(1):32–47. doi: 10.1016/0005-2760(71)90253-0. [DOI] [PubMed] [Google Scholar]
- Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
- Bieber L. L., Krahling J. B., Clarke P. R., Valkner K. J., Tolbert N. E. Carnitine acyltransferases in rat liver peroxisomes. Arch Biochem Biophys. 1981 Oct 15;211(2):599–604. doi: 10.1016/0003-9861(81)90494-x. [DOI] [PubMed] [Google Scholar]
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
- Bronfman M., Inestrosa N. C., Leighton F. Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1030–1036. doi: 10.1016/0006-291x(79)91512-2. [DOI] [PubMed] [Google Scholar]
- Bronfman M., Inestrosa N. C., Nervi F. O., Leighton F. Acyl-CoA synthetase and the peroxisomal enzymes of beta-oxidation in human liver. Quantitative analysis of their subcellular localization. Biochem J. 1984 Dec 15;224(3):709–720. doi: 10.1042/bj2240709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bronfman M., Leighton F. Carnitine acyltransferase and acyl-coenzyme A hydrolase activities in human liver. Quantitative analysis of their subcellular localization. Biochem J. 1984 Dec 15;224(3):721–730. doi: 10.1042/bj2240721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christiansen R. Z. The effect of clofibrate-feeding on hepatic fatty acid metabolism. Biochim Biophys Acta. 1978 Sep 28;530(3):314–324. doi: 10.1016/0005-2760(78)90151-0. [DOI] [PubMed] [Google Scholar]
- DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Declercq P. E., Falck J. R., Kuwajima M., Tyminski H., Foster D. W., McGarry J. D. Characterization of the mitochondrial carnitine palmitoyltransferase enzyme system. I. Use of inhibitors. J Biol Chem. 1987 Jul 15;262(20):9812–9821. [PubMed] [Google Scholar]
- Declercq P. E., Venincasa M. D., Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and 2-tetradecylglycidyl-CoA with mitochondrial carnitine palmitoyltransferase I. J Biol Chem. 1985 Oct 15;260(23):12516–12522. [PubMed] [Google Scholar]
- Farrell S. O., Bieber L. L. Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs. Arch Biochem Biophys. 1983 Apr 1;222(1):123–132. doi: 10.1016/0003-9861(83)90509-x. [DOI] [PubMed] [Google Scholar]
- Farrell S. O., Fiol C. J., Reddy J. K., Bieber L. L. Properties of purified carnitine acyltransferases of mouse liver peroxisomes. J Biol Chem. 1984 Nov 10;259(21):13089–13095. [PubMed] [Google Scholar]
- Foerster E. C., Fährenkemper T., Rabe U., Graf P., Sies H. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver. Biochem J. 1981 Jun 15;196(3):705–712. doi: 10.1042/bj1960705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Healy M. J., Kerner J., Bieber L. L. Enzymes of carnitine acylation. Is overt carnitine palmitoyltransferase of liver peroxisomal carnitine octanoyltransferase? Biochem J. 1988 Jan 1;249(1):231–237. doi: 10.1042/bj2490231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hertz R., Bar-Tana J. Prevention of peroxisomal proliferation by carnitine palmitoyltransferase inhibitors in cultured rat hepatocytes and in vivo. Biochem J. 1987 Jul 15;245(2):387–392. doi: 10.1042/bj2450387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaguchi A., Yoshimura T., Okuda S. A new method for the preparation of acyl-CoA thioesters. J Biochem. 1981 Feb;89(2):337–339. doi: 10.1093/oxfordjournals.jbchem.a133207. [DOI] [PubMed] [Google Scholar]
- Kiorpes T. C., Hoerr D., Ho W., Weaner L. E., Inman M. G., Tutwiler G. F. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem. 1984 Aug 10;259(15):9750–9755. [PubMed] [Google Scholar]
- Labarca P., Wolff D., Soto U., Necochea C., Leighton F. Large cation-selective pores from rat liver peroxisomal membranes incorporated to planar lipid bilayers. J Membr Biol. 1986;94(3):285–291. doi: 10.1007/BF01869724. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton F., Bergseth S., Rørtveit T., Christiansen E. N., Bremer J. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation. J Biol Chem. 1989 Jun 25;264(18):10347–10350. [PubMed] [Google Scholar]
- Leighton F., Brandan E., Lazo O., Bronfman M. Subcellular fractionation studies on the organization of fatty acid oxidation by liver peroxisomes. Ann N Y Acad Sci. 1982;386:62–80. doi: 10.1111/j.1749-6632.1982.tb21408.x. [DOI] [PubMed] [Google Scholar]
- Leighton F., Coloma L., Koenig C. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol. 1975 Nov;67(2PT1):281–309. doi: 10.1083/jcb.67.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leighton F., Pérsico R., Necochea C. Peroxisomal fatty acid oxidation is selectively inhibited by phenothiazines in isolated hepatocytes. Biochem Biophys Res Commun. 1984 Apr 30;120(2):505–511. doi: 10.1016/0006-291x(84)91283-x. [DOI] [PubMed] [Google Scholar]
- Lund H., Bremer J. Carnitine acetyltransferase. Effect of malonyl-CoA, fasting and clofibrate feeding in mitochondria from different tissues. Biochim Biophys Acta. 1983 Jan 7;750(1):164–170. doi: 10.1016/0005-2760(83)90216-3. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
- Markwell M. A., McGroarty E. J., Bieber L. L., Tolbert N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973 May 25;248(10):3426–3432. [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Acute reversal of experimental diabetic ketoacidosis in the rat with (+)-decanoylcarnitine. J Clin Invest. 1973 Apr;52(4):877–884. doi: 10.1172/JCI107252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Meier J. M., Foster D. W. The effects of starvation and refeeding on carbohydrate and lipid metabolism in vivo and in the perfused rat liver. The relationship between fatty acid oxidation and esterification in the regulation of ketogenesis. J Biol Chem. 1973 Jan 10;248(1):270–278. [PubMed] [Google Scholar]
- Miyazawa S., Ozasa H., Osumi T., Hashimoto T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem. 1983 Aug;94(2):529–542. doi: 10.1093/oxfordjournals.jbchem.a134384. [DOI] [PubMed] [Google Scholar]
- NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramsay R. R. The soluble carnitine palmitoyltransferase from bovine liver. A comparison with the enzymes from peroxisomes and from the mitochondrial inner membrane. Biochem J. 1988 Jan 1;249(1):239–245. doi: 10.1042/bj2490239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Effects of fasting, adrenalectomy and streptozotocin-diabetes on sensitivity of hepatic carnitine acyltransferase to malonyl CoA. FEBS Lett. 1981 Jul 6;129(2):225–228. doi: 10.1016/0014-5793(81)80170-6. [DOI] [PubMed] [Google Scholar]
- Tolbert N. E. Metabolic pathways in peroxisomes and glyoxysomes. Annu Rev Biochem. 1981;50:133–157. doi: 10.1146/annurev.bi.50.070181.001025. [DOI] [PubMed] [Google Scholar]
- Tutwiler G. F., Ho W., Mohrbacher R. J. 2-Tetradecylglycidic acid. Methods Enzymol. 1981;72:533–551. doi: 10.1016/s0076-6879(81)72042-1. [DOI] [PubMed] [Google Scholar]
- Vamecq J. Chlorpromazine and carnitine-dependency of rat liver peroxisomal beta-oxidation of long-chain fatty acids. Biochem J. 1987 Feb 1;241(3):783–791. doi: 10.1042/bj2410783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Veldhoven P., Debeer L. J., Mannaerts G. P. Water- and solute-accessible spaces of purified peroxisomes. Evidence that peroxisomes are permeable to NAD+. Biochem J. 1983 Mar 15;210(3):685–693. doi: 10.1042/bj2100685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson G. N., Holmes R. D., Hajra A. K. Peroxisomal disorders: clinical commentary and future prospects. Am J Med Genet. 1988 Jul;30(3):771–792. doi: 10.1002/ajmg.1320300311. [DOI] [PubMed] [Google Scholar]
- Wolvetang E. J., Tager J. M., Wanders R. J. Latency of the peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase in digitonin-permeabilized fibroblasts: the effect of ATP and ATPase inhibitors. Biochem Biophys Res Commun. 1990 Aug 16;170(3):1135–1143. doi: 10.1016/0006-291x(90)90511-k. [DOI] [PubMed] [Google Scholar]
- del Valle R., Soto U., Necochea C., Leighton F. Detection of an ATPase activity in rat liver peroxisomes. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1353–1359. doi: 10.1016/s0006-291x(88)80781-2. [DOI] [PubMed] [Google Scholar]