Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Feb 1;281(Pt 3):697–701. doi: 10.1042/bj2810697

Phorbol 12-myristate 13-acetate activates an electrogenic H(+)-conducting pathway in the membrane of neutrophils.

A Kapus 1, K Szászi 1, E Ligeti 1
PMCID: PMC1130747  PMID: 1371386

Abstract

The mode of activation of an H(+)-conducting pathway present in the membrane of neutrophils was investigated. (1) Resting neutrophils released protons through an electrogenic Cd(2+)-inhibitable (K0.5 approximately 20 microM) route when a pH gradient and appropriate charge compensation was provided. (2) The rate of H+ efflux was stimulated over 2.5-fold by 4 beta-phorbol 12-myristate 13-acetate (PMA; K0.5 approximately 0.7 nM) or by 4 beta-phorbol 12,13-dibutyrate (K0.5 approximately 20 nM) even when the NADPH oxidase was blocked by p-chloromercuribenzoate. (3) Staurosporine inhibited the effect of PMA. (4) The H+ egress was not enhanced by 4 alpha-phorbol 12,13-didecanoate. (5) Low concentrations of Cd2+ (less than 40 microM) inhibited the H+ flux without influencing the oxidase. The results raise the possibility that protein kinase C could be involved in the activation of an electrogenic H(+)-conducting pathway in the membrane of neutrophils. The activation of this route by phorbol esters seems to be independent of the stimulation of NADPH oxidase.

Full text

PDF
697

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellavite P., Serra M. C., Davoli A., Bannister J. V., Rossi F. The NADPH oxidase of guinea pig polymorphonuclear leucocytes. Properties of the deoxycholate extracted enzyme. Mol Cell Biochem. 1983;52(1):17–25. doi: 10.1007/BF00230585. [DOI] [PubMed] [Google Scholar]
  2. Bidani A., Brown S. E. ATP-dependent pHi recovery in lung macrophages: evidence for a plasma membrane H(+)-ATPase. Am J Physiol. 1990 Oct;259(4 Pt 1):C586–C598. doi: 10.1152/ajpcell.1990.259.4.C586. [DOI] [PubMed] [Google Scholar]
  3. Bidani A., Brown S. E., Heming T. A., Gurich R., Dubose T. D., Jr Cytoplasmic pH in pulmonary macrophages: recovery from acid load is Na+ independent and NEM sensitive. Am J Physiol. 1989 Jul;257(1 Pt 1):C65–C76. doi: 10.1152/ajpcell.1989.257.1.C65. [DOI] [PubMed] [Google Scholar]
  4. Clark R. A., Volpp B. D., Leidal K. G., Nauseef W. M. Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest. 1990 Mar;85(3):714–721. doi: 10.1172/JCI114496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cross A. R., Parkinson J. F., Jones O. T. Mechanism of the superoxide-producing oxidase of neutrophils. O2 is necessary for the fast reduction of cytochrome b-245 by NADPH. Biochem J. 1985 Mar 15;226(3):881–884. doi: 10.1042/bj2260881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cross A. R. The inhibitory effects of some iodonium compounds on the superoxide generating system of neutrophils and their failure to inhibit diaphorase activity. Biochem Pharmacol. 1987 Feb 15;36(4):489–493. doi: 10.1016/0006-2952(87)90356-x. [DOI] [PubMed] [Google Scholar]
  8. Dewald B., Thelen M., Wymann M. P., Baggiolini M. Staurosporine inhibits the respiratory burst and induces exocytosis in human neutrophils. Biochem J. 1989 Dec 15;264(3):879–884. doi: 10.1042/bj2640879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Di Virgilio F., Lew P. D., Andersson T., Pozzan T. Plasma membrane potential modulates chemotactic peptide-stimulated cytosolic free Ca2+ changes in human neutrophils. J Biol Chem. 1987 Apr 5;262(10):4574–4579. [PubMed] [Google Scholar]
  10. Ellis J. A., Mayer S. J., Jones O. T. The effect of the NADPH oxidase inhibitor diphenyleneiodonium on aerobic and anaerobic microbicidal activities of human neutrophils. Biochem J. 1988 May 1;251(3):887–891. doi: 10.1042/bj2510887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gabig T. G., Lefker B. A., Ossanna P. J., Weiss S. J. Proton stoichiometry associated with human neutrophil respiratory-burst reactions. J Biol Chem. 1984 Nov 10;259(21):13166–13171. [PubMed] [Google Scholar]
  12. Grinstein S., Elder B., Furuya W. Phorbol ester-induced changes of cytoplasmic pH in neutrophils: role of exocytosis in Na+-H+ exchange. Am J Physiol. 1985 Mar;248(3 Pt 1):C379–C386. doi: 10.1152/ajpcell.1985.248.3.C379. [DOI] [PubMed] [Google Scholar]
  13. Grinstein S., Furuya W. Cytoplasmic pH regulation in phorbol ester-activated human neutrophils. Am J Physiol. 1986 Jul;251(1 Pt 1):C55–C65. doi: 10.1152/ajpcell.1986.251.1.C55. [DOI] [PubMed] [Google Scholar]
  14. Henderson L. M., Chappell J. B., Jones O. T. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel. Biochem J. 1988 Apr 15;251(2):563–567. doi: 10.1042/bj2510563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henderson L. M., Chappell J. B., Jones O. T. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem J. 1988 Oct 1;255(1):285–290. [PMC free article] [PubMed] [Google Scholar]
  16. Henderson L. M., Chappell J. B., Jones O. T. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J. 1987 Sep 1;246(2):325–329. doi: 10.1042/bj2460325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kapus A., Ligeti E., Fonyó A. Na+/H+ exchange in mitochondria as monitored by BCECF fluorescence. FEBS Lett. 1989 Jul 17;251(1-2):49–52. doi: 10.1016/0014-5793(89)81426-7. [DOI] [PubMed] [Google Scholar]
  18. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  19. Kuroki M., Kamo N., Kobatake Y., Okimasu E., Utsumi K. Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation. Biochim Biophys Acta. 1982 Dec 22;693(2):326–334. doi: 10.1016/0005-2736(82)90439-4. [DOI] [PubMed] [Google Scholar]
  20. Laporte F., Doussiere J., Vignais P. V. Respiratory burst of rabbit peritoneal neutrophils. Transition from an NADPH diaphorase activity to an .O2(-)-generating oxidase activity. Eur J Biochem. 1990 Nov 26;194(1):301–308. doi: 10.1111/j.1432-1033.1990.tb19457.x. [DOI] [PubMed] [Google Scholar]
  21. Ligeti E., Doussiere J., Vignais P. V. Activation of the O2(.-)-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry. 1988 Jan 12;27(1):193–200. doi: 10.1021/bi00401a029. [DOI] [PubMed] [Google Scholar]
  22. Lu D. J., Grinstein S. ATP and guanine nucleotide dependence of neutrophil activation. Evidence for the involvement of two distinct GTP-binding proteins. J Biol Chem. 1990 Aug 15;265(23):13721–13729. [PubMed] [Google Scholar]
  23. Lukacs G. L., Rotstein O. D., Grinstein S. Phagosomal acidification is mediated by a vacuolar-type H(+)-ATPase in murine macrophages. J Biol Chem. 1990 Dec 5;265(34):21099–21107. [PubMed] [Google Scholar]
  24. Majander A., Wikström M. The plasma membrane potential of human neutrophils. Role of ion channels and the sodium/potassium pump. Biochim Biophys Acta. 1989 Apr 14;980(2):139–145. doi: 10.1016/0005-2736(89)90392-1. [DOI] [PubMed] [Google Scholar]
  25. Myers J. B., Cantiello H. F., Schwartz J. H., Tauber A. I. Phorbol ester-stimulated human neutrophil membrane depolarization is dependent on Ca2(+)-regulated Cl- efflux. Am J Physiol. 1990 Oct;259(4 Pt 1):C531–C540. doi: 10.1152/ajpcell.1990.259.4.C531. [DOI] [PubMed] [Google Scholar]
  26. Nunoi H., Rotrosen D., Gallin J. I., Malech H. L. Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science. 1988 Dec 2;242(4883):1298–1301. doi: 10.1126/science.2848319. [DOI] [PubMed] [Google Scholar]
  27. Roos D., de Boer M. Purification and cryopreservation of phagocytes from human blood. Methods Enzymol. 1986;132:225–243. doi: 10.1016/s0076-6879(86)32010-x. [DOI] [PubMed] [Google Scholar]
  28. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  29. Segal A. W. The electron transport chain of the microbicidal oxidase of phagocytic cells and its involvement in the molecular pathology of chronic granulomatous disease. J Clin Invest. 1989 Jun;83(6):1785–1793. doi: 10.1172/JCI114083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Seligmann B. E., Gallin J. I. Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease. J Clin Invest. 1980 Sep;66(3):493–503. doi: 10.1172/JCI109880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shearman M. S., Sekiguchi K., Nishizuka Y. Modulation of ion channel activity: a key function of the protein kinase C enzyme family. Pharmacol Rev. 1989 Jun;41(2):211–237. [PubMed] [Google Scholar]
  32. Simchowitz L. Chemotactic factor-induced activation of Na+/H+ exchange in human neutrophils. II. Intracellular pH changes. J Biol Chem. 1985 Oct 25;260(24):13248–13255. [PubMed] [Google Scholar]
  33. Simchowitz L., Foy M. A., Cragoe E. J., Jr A role for Na+/Ca2+ exchange in the generation of superoxide radicals by human neutrophils. J Biol Chem. 1990 Aug 15;265(23):13449–13456. [PubMed] [Google Scholar]
  34. Swallow C. J., Grinstein S., Rotstein O. D. A vacuolar type H(+)-ATPase regulates cytoplasmic pH in murine macrophages. J Biol Chem. 1990 May 5;265(13):7645–7654. [PubMed] [Google Scholar]
  35. Swallow C. J., Grinstein S., Rotstein O. D. Cytoplasmic pH regulation in macrophages by an ATP-dependent and N,N'-dicyclohexylcarbodiimide-sensitive mechanism. Possible involvement of a plasma membrane proton pump. J Biol Chem. 1988 Dec 25;263(36):19558–19563. [PubMed] [Google Scholar]
  36. Tanaka T., Imajoh-Ohmi S., Kanegasaki S., Takagi Y., Makino R., Ishimura Y. A 63-kilodalton cytosolic polypeptide involved in superoxide generation in porcine neutrophils. Purification and characterization. J Biol Chem. 1990 Nov 5;265(31):18717–18720. [PubMed] [Google Scholar]
  37. Tauber A. I., Brettler D. B., Kennington E. A., Blumberg P. M. Relation of human neutrophil phorbol ester receptor occupancy and NADPH-oxidase activity. Blood. 1982 Aug;60(2):333–339. [PubMed] [Google Scholar]
  38. Volpp B. D., Nauseef W. M., Clark R. A. Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science. 1988 Dec 2;242(4883):1295–1297. doi: 10.1126/science.2848318. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES