Abstract
The effect of tricarboxylic acid-cycle intermediates and related compounds on 2-oxoglutarate decarboxylase activity was investigated. The addition of L-glutamate to Euglena cells grown on glucose/(NH4)2SO4 medium resulted in an increase in 2-oxoglutarate decarboxylase activity, which was abolished by the simultaneous addition of cycloheximide. Immunochemical titration, immunoblot analysis and labelling in vivo with antibody raised against 2-oxoglutarate decarboxylase showed that the increase in 2-oxoglutarate decarboxylase activity was due to synthesis of new protein and not to activation of pre-existing protein. The experimental results reported here demonstrate that L-glutamate is assimilated by the pathway, via 2-oxoglutarate, that consists of L-glutamate-oxaloacetate aminotransferase, 2-oxoglutarate decarboxylase and succinate semialdehyde dehydrogenase, rather than by the gamma-aminobutyrate shunt, consisting of L-glutamate decarboxylase and gamma-aminobutyrate aminotransferase.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cannons A. C., Merrett M. J. Regulation of synthesis of citrate synthase in regreening Euglena gracilis. Eur J Biochem. 1984 Aug 1;142(3):597–602. doi: 10.1111/j.1432-1033.1984.tb08328.x. [DOI] [PubMed] [Google Scholar]
- Collins N., Merrett M. J. The localization of glycollate-pathway enzymes in Euglena. Biochem J. 1975 May;148(2):321–328. doi: 10.1042/bj1480321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohashi A., Gibson J., Gregor I., Schatz G. Import of proteins into mitochondria. The precursor of cytochrome c1 is processed in two steps, one of them heme-dependent. J Biol Chem. 1982 Nov 10;257(21):13042–13047. [PubMed] [Google Scholar]
- Parker J. E., Javed Q., Merrett M. J. Glutamate dehydrogenase (NADP-dependent) mRNA in relation to enzyme synthesis in Euglena gracilis. Evidence for post-transcriptional control. Eur J Biochem. 1985 Dec 16;153(3):573–578. doi: 10.1111/j.1432-1033.1985.tb09339.x. [DOI] [PubMed] [Google Scholar]
- Shigeoka S., Nakano Y. Characterization and molecular properties of 2-oxoglutarate decarboxylase from Euglena gracilis. Arch Biochem Biophys. 1991 Jul;288(1):22–28. doi: 10.1016/0003-9861(91)90160-k. [DOI] [PubMed] [Google Scholar]
- Shigeoka S., Takeda T., Hanaoka T. Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii. Biochem J. 1991 May 1;275(Pt 3):623–627. doi: 10.1042/bj2750623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokunaga M., Nakano Y., Kitaoka S. Separation and properties of the NAD-linked and NADP-linked isozymes of succinic semialdehyde dehydrogenase in Euglena gracilis z. Biochim Biophys Acta. 1976 Mar 11;429(1):55–62. doi: 10.1016/0005-2744(76)90029-2. [DOI] [PubMed] [Google Scholar]
- Tokunaga M., Nakano Y., Kitaoka S. Subcellular localization of the GABA-shunt enzymes in Euglena gracilis strain Z. J Protozool. 1979 Aug;26(3):471–473. doi: 10.1111/j.1550-7408.1979.tb04655.x. [DOI] [PubMed] [Google Scholar]

