Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Mar 1;282(Pt 2):523–532. doi: 10.1042/bj2820523

Proteolytic dissection of the isolated platelet fibrinogen receptor, integrin GPIIb/IIIa. Localization of GPIIb and GPIIIa sequences putatively involved in the subunit interface and in intrasubunit and intrachain contacts.

J J Calvete 1, K Mann 1, M V Alvarez 1, M M López 1, J González-Rodríguez 1
PMCID: PMC1130812  PMID: 1546968

Abstract

Human platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form the subunits of the Ca(2+)-dependent heterodimer GPIIb/IIIa, which belongs to the integrin family of phylogenetically related receptors mediating a wide variety of cell-cell and cell-substratum interactions. GPIIb/IIIa plays a central role in haemostasis as a receptor for fibrinogen and other adhesive proteins at the surface of activated platelets. The covalent structure of the subunits is largely known; however, the tertiary and quaternary structures of the heterodimer remain to be determined. To this end, our approach consisted of limited proteolysis of the isolated heterodimer with proteinases of different specificities, followed by protein-chemical and immunochemical analyses of the peptide fragments within each isolated proteolytic product. From the information obtained, we have drawn a rudimentary map which outlines the demarcation of compact domains and the subunit peptide stretches carrying the sequences putatively involved in intrachain, intrasubunit and intersubunit non-covalent connectivity in the heterodimer. Three compact domains have been well defined: one in the heavy (H) chain of GPIIb [GPIIbH-(600-700)], and two in GPIIIa, the N-terminal [GPIIIa-(1-52)] and the core [GPIIIa-(423-622)] domains. Between the latter two domains there is a proteolysis-susceptible region, which is partly involved in ligand binding [GPIIIa-(100-220)] and partly implicated as being in teh subunit interface of the heterodimer. Contrary to GPIIIa, GPIIbH is highly susceptible to proteolysis all along its sequence. Equally susceptible are the extracellular end of the transmembrane segment of both GPIIIa and the light (L) chain of GPIIb (GPIIbL), and the N-terminal end of GPIIbL. Three sequence stretches along the C-terminal half of GPIIbH, one sequence stretch in GPIIbL and three sequence stretches within the GPIIIa-(217-421) region were putatively involved in the subunit interface of the heterodimer. Most likely, the N-terminal end of GPIIbL is folded over the N- and C-terminal regions of GPIIbH, and the N-terminal end of GPIIbH is folded against the GPIIbH-(600-700) domain. This map of GPIIb/IIIa does not fit the current accommodation of the amino acid sequence of GPIIb and GPIIIa in the head/two-tails image of the heterodimer obtained by metal-rotary-shadowing electron microscopy.

Full text

PDF
523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaout M. A., Remold-O'Donnell E., Pierce M. W., Harris P., Tenen D. G. Molecular cloning of the alpha subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: chromosomal localization and homology to the alpha subunits of integrins. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2776–2780. doi: 10.1073/pnas.85.8.2776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beer J., Coller B. S. Evidence that platelet glycoprotein IIIa has a large disulfide-bonded loop that is susceptible to proteolytic cleavage. J Biol Chem. 1989 Oct 15;264(29):17564–17573. [PubMed] [Google Scholar]
  3. Blalock J. E., Smith E. M. Hydropathic anti-complementarity of amino acids based on the genetic code. Biochem Biophys Res Commun. 1984 May 31;121(1):203–207. doi: 10.1016/0006-291x(84)90707-1. [DOI] [PubMed] [Google Scholar]
  4. Calvete J. J., Arias J., Alvarez M. V., Lopez M. M., Henschen A., Gonzalez-Rodriguez J. Further studies on the topography of human platelet glycoprotein IIb. Localization of monoclonal antibody epitopes and the putative glycoprotein IIa- and fibrinogen-binding regions. Biochem J. 1991 Feb 1;273(Pt 3):767–775. doi: 10.1042/bj2730767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Calvete J. J., Arias J., Alvarez M. V., Lopez M. M., Henschen A., González-Rodríguez J. Further studies on the topography of the N-terminal region of human platelet glycoprotein IIIa. Localization of monoclonal antibody epitopes and the putative fibrinogen-binding sites. Biochem J. 1991 Mar 1;274(Pt 2):457–463. doi: 10.1042/bj2740457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calvete J. J., González-Rodríguez J. Isolation and biochemical characterization of the alpha- and beta-subunits of glycoprotein IIb of human platelet plasma membrane. Biochem J. 1986 Nov 15;240(1):155–161. doi: 10.1042/bj2400155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Calvete J. J., Henschen A., González-Rodríguez J. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the beta-subunits of the integrin family. Biochem J. 1991 Feb 15;274(Pt 1):63–71. doi: 10.1042/bj2740063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Calvete J. J., Henschen A., González-Rodríguez J. Complete localization of the intrachain disulphide bonds and the N-glycosylation points in the alpha-subunit of human platelet glycoprotein IIb. Biochem J. 1989 Jul 15;261(2):561–568. doi: 10.1042/bj2610561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Calvete J. J., Rivas G., Maruri M., Alvarez M. V., McGregor J. L., Hew C. L., Gonzalez-Rodriguez J. Tryptic digestion of human GPIIIa. Isolation and biochemical characterization of the 23 kDa N-terminal glycopeptide carrying the antigenic determinant for a monoclonal antibody (P37) which inhibits platelet aggregation. Biochem J. 1988 Mar 15;250(3):697–704. doi: 10.1042/bj2500697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Calvete J. J., Schäfer W., Henschen A., González-Rodríguez J. Characterization of the beta-chain N-terminus heterogeneity and the alpha-chain C-terminus of human platelet GPIIb. Posttranslational cleavage sites. FEBS Lett. 1990 Oct 15;272(1-2):37–40. doi: 10.1016/0014-5793(90)80443-m. [DOI] [PubMed] [Google Scholar]
  11. Carrell N. A., Fitzgerald L. A., Steiner B., Erickson H. P., Phillips D. R. Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy. J Biol Chem. 1985 Feb 10;260(3):1743–1749. [PubMed] [Google Scholar]
  12. Charo I. F., Nannizzi L., Phillips D. R., Hsu M. A., Scarborough R. M. Inhibition of fibrinogen binding to GP IIb-IIIa by a GP IIIa peptide. J Biol Chem. 1991 Jan 25;266(3):1415–1421. [PubMed] [Google Scholar]
  13. D'Souza S. E., Ginsberg M. H., Burke T. A., Lam S. C., Plow E. F. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science. 1988 Oct 7;242(4875):91–93. doi: 10.1126/science.3262922. [DOI] [PubMed] [Google Scholar]
  14. D'Souza S. E., Ginsberg M. H., Burke T. A., Plow E. F. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its alpha subunit. J Biol Chem. 1990 Feb 25;265(6):3440–3446. [PubMed] [Google Scholar]
  15. D'Souza S. E., Ginsberg M. H., Matsueda G. R., Plow E. F. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature. 1991 Mar 7;350(6313):66–68. doi: 10.1038/350066a0. [DOI] [PubMed] [Google Scholar]
  16. Fitzgerald L. A., Steiner B., Rall S. C., Jr, Lo S. S., Phillips D. R. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarity to "integrin". J Biol Chem. 1987 Mar 25;262(9):3936–3939. [PubMed] [Google Scholar]
  17. Ginsberg M. H., Loftus J. C., Plow E. F. Cytoadhesins, integrins, and platelets. Thromb Haemost. 1988 Feb 25;59(1):1–6. [PubMed] [Google Scholar]
  18. Heidenreich R., Eisman R., Surrey S., Delgrosso K., Bennett J. S., Schwartz E., Poncz M. Organization of the gene for platelet glycoprotein IIb. Biochemistry. 1990 Feb 6;29(5):1232–1244. doi: 10.1021/bi00457a020. [DOI] [PubMed] [Google Scholar]
  19. Kieffer N., Phillips D. R. Platelet membrane glycoproteins: functions in cellular interactions. Annu Rev Cell Biol. 1990;6:329–357. doi: 10.1146/annurev.cb.06.110190.001553. [DOI] [PubMed] [Google Scholar]
  20. Kunicki T. J., Pidard D., Rosa J. P., Nurden A. T. The formation of Ca++-dependent complexes of platelet membrane glycoproteins IIb and IIIa in solution as determined by crossed immunoelectrophoresis. Blood. 1981 Aug;58(2):268–278. [PubMed] [Google Scholar]
  21. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lam S. C., Plow E. F., Ginsberg M. H. Platelet membrane glycoprotein IIb heavy chain forms a complex with glycoprotein IIIa that binds Arg-Gly-Asp peptides. Blood. 1989 May 1;73(6):1513–1518. [PubMed] [Google Scholar]
  24. Lanza F., Kieffer N., Phillips D. R., Fitzgerald L. A. Characterization of the human platelet glycoprotein IIIa gene. Comparison with the fibronectin receptor beta-subunit gene. J Biol Chem. 1990 Oct 25;265(30):18098–18103. [PubMed] [Google Scholar]
  25. Loftus J. C., O'Toole T. E., Plow E. F., Glass A., Frelinger A. L., 3rd, Ginsberg M. H. A beta 3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation. Science. 1990 Aug 24;249(4971):915–918. doi: 10.1126/science.2392682. [DOI] [PubMed] [Google Scholar]
  26. Niewiarowski S., Norton K. J., Eckardt A., Lukasiewicz H., Holt J. C., Kornecki E. Structural and functional characterization of major platelet membrane components derived by limited proteolysis of glycoprotein IIIa. Biochim Biophys Acta. 1989 Jul 24;983(1):91–99. doi: 10.1016/0005-2736(89)90384-2. [DOI] [PubMed] [Google Scholar]
  27. Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem. 1977 Mar 25;252(6):2121–2126. [PubMed] [Google Scholar]
  28. Plow E. F., Ginsberg M. H. Cellular adhesion: GPIIb-IIIa as a prototypic adhesion receptor. Prog Hemost Thromb. 1989;9:117–156. [PubMed] [Google Scholar]
  29. Poncz M., Eisman R., Heidenreich R., Silver S. M., Vilaire G., Surrey S., Schwartz E., Bennett J. S. Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem. 1987 Jun 25;262(18):8476–8482. [PubMed] [Google Scholar]
  30. Rivas G. A., Aznárez J. A., Usobiaga P., Saiz J. L., González-Rodríguez J. Molecular characterization of the human platelet integrin GPIIb/IIIa and its constituent glycoproteins. Eur Biophys J. 1991;19(6):335–345. doi: 10.1007/BF00183324. [DOI] [PubMed] [Google Scholar]
  31. Rivas G. A., González-Rodríguez J. Calcium binding to human platelet integrin GPIIb/IIIa and to its constituent glycoproteins. Effects of lipids and temperature. Biochem J. 1991 May 15;276(Pt 1):35–40. doi: 10.1042/bj2760035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Usobiaga P., Calvete J. J., Saíz J. L., Eirín M. T., González-Rodríguez J. Molecular characterization of human platelet glycoproteins IIIa and IIb and the subunits of the latter. Eur Biophys J. 1987;14(4):211–218. doi: 10.1007/BF00256354. [DOI] [PubMed] [Google Scholar]
  33. Wilson J. E. The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. Methods Biochem Anal. 1991;35:207–250. doi: 10.1002/9780470110560.ch4. [DOI] [PubMed] [Google Scholar]
  34. Zimrin A. B., Gidwitz S., Lord S., Schwartz E., Bennett J. S., White G. C., 2nd, Poncz M. The genomic organization of platelet glycoprotein IIIa. J Biol Chem. 1990 May 25;265(15):8590–8595. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES