Abstract
In rat hepatocytes, molybdate and tungstate inactivate glycogen synthase by a mechanism independent of Ca2+ and activate glycogen phosphorylase by a Ca(2+)-dependent mechanism. On the other hand, both molybdate and tungstate increase fructose 2,6-bisphosphate levels and counteract the decrease in this metabolite induced by glucagon. These effectors do not directly modify 6-phosphofructo-2-kinase activity, even though they partially counteract the inactivation of this enzyme induced by glucagon. These effects are related to an increase on the glycolytic flux, as indicated by the increase in L-lactate and CO2 production and the decrease in glucose 6-phosphate levels in the presence of glucose. All these effects are similar to those previously reported for vanadate, although molybdate and tungstate are less effective than vanadate. These results could indicate that molybdate, tungstate and vanadate act on glucose metabolism in isolated hepatocytes by a similar mechanism of action.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartrons R., Hue L., Van Schaftingen E., Hers H. G. Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. Biochem J. 1983 Sep 15;214(3):829–837. doi: 10.1042/bj2140829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bendayan M., Gingras D. Effect of vanadate administration on blood glucose and insulin levels as well as on the exocrine pancreatic function in streptozotocin-diabetic rats. Diabetologia. 1989 Aug;32(8):561–567. doi: 10.1007/BF00285328. [DOI] [PubMed] [Google Scholar]
- Blondel O., Bailbe D., Portha B. In vivo insulin resistance in streptozotocin-diabetic rats--evidence for reversal following oral vanadate treatment. Diabetologia. 1989 Mar;32(3):185–190. doi: 10.1007/BF00265092. [DOI] [PubMed] [Google Scholar]
- Bollen M., Miralpeix M., Ventura F., Toth B., Bartrons R., Stalmans W. Oral administration of vanadate to streptozotocin-diabetic rats restores the glucose-induced activation of liver glycogen synthase. Biochem J. 1990 Apr 1;267(1):269–271. doi: 10.1042/bj2670269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch F., Ariño J., Gómez-Foix A. M., Guinovart J. J. Glycogenolytic, noninsulin-like effects of vanadate on rat hepatocyte glycogen synthase and phosphorylase. J Biol Chem. 1987 Jan 5;262(1):218–222. [PubMed] [Google Scholar]
- Brichard S. M., Pottier A. M., Henquin J. C. Long term improvement of glucose homeostasis by vanadate in obese hyperinsulinemic fa/fa rats. Endocrinology. 1989 Nov;125(5):2510–2516. doi: 10.1210/endo-125-5-2510. [DOI] [PubMed] [Google Scholar]
- Brown E. G., Newton R. P., Shaw N. M. Analysis of the free nucloetide pools of mammalian tissue by high-pressure liquid chromatography. Anal Biochem. 1982 Jul 1;123(2):378–388. doi: 10.1016/0003-2697(82)90461-4. [DOI] [PubMed] [Google Scholar]
- Czech M. P., Lawrence J. C., Jr, Lynn W. S. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4173–4177. doi: 10.1073/pnas.71.10.4173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Priore L. V., Lewis A. Vanadate, tungstate and molybdate activate rod outer segment phosphodiesterase in the dark. Biochim Biophys Acta. 1985 Apr 22;845(1):81–85. doi: 10.1016/0167-4889(85)90057-6. [DOI] [PubMed] [Google Scholar]
- Gil J., Miralpeix M., Carreras J., Bartrons R. Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem. 1988 Feb 5;263(4):1868–1871. [PubMed] [Google Scholar]
- Gilboe D. P., Larson K. L., Nuttall F. Q. Radioactive method for the assay of glycogen phosphorylases. Anal Biochem. 1972 May;47(1):20–27. doi: 10.1016/0003-2697(72)90274-6. [DOI] [PubMed] [Google Scholar]
- Guinovart J. J., Salavert A., Massagué J., Ciudad C. J., Salsas E., Itarte E. Glycogen synthase: a new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Lett. 1979 Oct 15;106(2):284–288. doi: 10.1016/0014-5793(79)80515-3. [DOI] [PubMed] [Google Scholar]
- Gómez-Foix A. M., Rodríguez-Gil J. E., Fillat C., Guinovart J. J., Bosch F. Vanadate raises fructose 2,6-bisphosphate concentrations and activates glycolysis in rat hepatocytes. Biochem J. 1988 Oct 15;255(2):507–512. [PMC free article] [PubMed] [Google Scholar]
- Heyliger C. E., Tahiliani A. G., McNeill J. H. Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science. 1985 Mar 22;227(4693):1474–1477. doi: 10.1126/science.3156405. [DOI] [PubMed] [Google Scholar]
- Massagué J., Guinovart J. J. Insulin control of rat hepatocyte glycogen synthase and phosphorylase in the absence of glucose. FEBS Lett. 1977 Oct 15;82(2):317–320. doi: 10.1016/0014-5793(77)80610-8. [DOI] [PubMed] [Google Scholar]
- Meyerovitch J., Farfel Z., Sack J., Shechter Y. Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. Characterization and mode of action. J Biol Chem. 1987 May 15;262(14):6658–6662. [PubMed] [Google Scholar]
- Richards J. M., Swislocki N. I. Activation of adenylate cyclase by molybdate. J Biol Chem. 1979 Aug 10;254(15):6857–6860. [PubMed] [Google Scholar]
- Richards J. M., Swislocki N. I. Mechanism of molybdate activation of adenylate cyclase. Biochim Biophys Acta. 1981 Dec 4;678(2):180–186. doi: 10.1016/0304-4165(81)90204-x. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Gil J. E., Gómez-Foix A. M., Ariño J., Guinovart J. J., Bosch F. Control of glycogen synthase and phosphorylase in hepatocytes from diabetic rats. Effects of glucagon, vasopressin, and vanadate. Diabetes. 1989 Jun;38(6):793–798. doi: 10.2337/diab.38.6.793. [DOI] [PubMed] [Google Scholar]
- Rodríguez-Gil J. E., Gómez-Foix A. M., Fillat C., Bosch F., Guinovart J. J. Activation by vanadate of glycolysis in hepatocytes from diabetic rats. Diabetes. 1991 Oct;40(10):1355–1359. doi: 10.2337/diab.40.10.1355. [DOI] [PubMed] [Google Scholar]
- Schwabe U., Puchstein C., Hannemann H., Söchtig E. Activation of adenylate cyclase by vanadate. Nature. 1979 Jan 11;277(5692):143–145. doi: 10.1038/277143a0. [DOI] [PubMed] [Google Scholar]
- Shechter Y., Karlish S. J. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature. 1980 Apr 10;284(5756):556–558. doi: 10.1038/284556a0. [DOI] [PubMed] [Google Scholar]
- Stankiewicz P. J., Gresser M. J. Inhibition of phosphatase and sulfatase by transition-state analogues. Biochemistry. 1988 Jan 12;27(1):206–212. doi: 10.1021/bi00401a031. [DOI] [PubMed] [Google Scholar]
- Tamura S., Brown T. A., Whipple J. H., Fujita-Yamaguchi Y., Dubler R. E., Cheng K., Larner J. A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. J Biol Chem. 1984 May 25;259(10):6650–6658. [PubMed] [Google Scholar]
- Van Schaftingen E., Lederer B., Bartrons R., Hers H. G. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 1982 Dec;129(1):191–195. doi: 10.1111/j.1432-1033.1982.tb07039.x. [DOI] [PubMed] [Google Scholar]