Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Mar 15;282(Pt 3):891–897. doi: 10.1042/bj2820891

Comparison of liver glycosylasparaginases from six vertebrates.

O K Tollersrud 1, N N Aronson Jr 1
PMCID: PMC1130871  PMID: 1554372

Abstract

Structural and physical properties of glycosylasparaginase (EC 3.5.1.26) from the livers of human, pig, cow, rat, mouse and chicken were compared. The enzyme in all species had a common basic structure of two N-glycosylated subunits of about 24 (alpha) and 20 (beta) kDa joined by non-covalent forces. Subunit-specific antisera against the rat glycosylasparaginase bound specifically and sensitively to the corresponding subunits from all species. Identity of 80% of the amino acids was found between the N-terminal sequences of corresponding pig and rat glycosylasparaginase alpha- and beta-subunits and the deduced sequence from a human glycosylasparaginase cDNA [Fisher, Tollersrud & Aronson (1990) FEBS Lett. 269, 440-444]. The beta-subunit from all three species has an N-terminal threonine reported to be involved in the reaction mechanism for the human enzyme [Kaartinen, Williams, Tomich, Yates, Hood & Mononen (1991) J. Biol. Chem. 266, 5860-5869]. The native enzyme appeared as a heterodimer among the mammals, whereas the chicken enzyme had a greater molecular mass and is probably either a tetramer or a heterodimer bound to an unrelated peptide(s). All glycosylasparaginases were thermostable, requiring temperatures between 65 degrees C and 80 degrees C to be irreversibly inactivated. In addition, they were unusually stable at high pH and remained active in the presence of SDS except at low pH. The pH maximum was between 5.5 and 6 except for the rat and mouse enzymes which had a broad maximum between pH 7 and 8. A number of other properties were observed which also distinguish the enzyme from individual and closely related species.

Full text

PDF
891

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson N. N., Jr, Kuranda M. J. Lysosomal degradation of Asn-linked glycoproteins. FASEB J. 1989 Dec;3(14):2615–2622. doi: 10.1096/fasebj.3.14.2531691. [DOI] [PubMed] [Google Scholar]
  2. Baumann M., Peltonen L., Aula P., Kalkkinen N. Isolation of a human hepatic 60 kDa aspartylglucosaminidase consisting of three non-identical polypeptides. Biochem J. 1989 Aug 15;262(1):189–194. doi: 10.1042/bj2620189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fisher K. J., Aronson N. N., Jr Characterization of the mutation responsible for aspartylglucosaminuria in three Finnish patients. Amino acid substitution Cys163----Ser abolishes the activity of lysosomal glycosylasparaginase and its conversion into subunits. J Biol Chem. 1991 Jun 25;266(18):12105–12113. [PubMed] [Google Scholar]
  4. Fisher K. J., Tollersrud O. K., Aronson N. N., Jr Cloning and sequence analysis of a cDNA for human glycosylasparaginase. A single gene encodes the subunits of this lysosomal amidase. FEBS Lett. 1990 Sep 3;269(2):440–444. doi: 10.1016/0014-5793(90)81211-6. [DOI] [PubMed] [Google Scholar]
  5. Halila R., Baumann M., Ikonen E., Enomaa N., Peltonen L. Human leucocyte aspartylglucosaminidase. Evidence for two different subunits in a more complex native structure. Biochem J. 1991 May 15;276(Pt 1):251–256. doi: 10.1042/bj2760251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ikonen E., Baumann M., Grön K., Syvänen A. C., Enomaa N., Halila R., Aula P., Peltonen L. Aspartylglucosaminuria: cDNA encoding human aspartylglucosaminidase and the missense mutation causing the disease. EMBO J. 1991 Jan;10(1):51–58. doi: 10.1002/j.1460-2075.1991.tb07920.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaartinen V., Williams J. C., Tomich J., Yates J. R., 3rd, Hood L. E., Mononen I. Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxonorvaline. J Biol Chem. 1991 Mar 25;266(9):5860–5869. [PubMed] [Google Scholar]
  8. Kono M., Yamashina I. Purification and properties of 4-L-aspartylglycosylamine amidohydrolase from hog kidney. Biochim Biophys Acta. 1972 Feb 28;258(2):600–617. doi: 10.1016/0005-2744(72)90252-5. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Makino M., Kojima T., Ohgushi T., Yamashina I. Studies on enzymes acting on glycopeptides. J Biochem. 1968 Feb;63(2):186–192. doi: 10.1093/oxfordjournals.jbchem.a128760. [DOI] [PubMed] [Google Scholar]
  11. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  12. Maury C. P. Aspartylglycosaminuria: an inborn error of glycoprotein catabolism. J Inherit Metab Dis. 1982;5(4):192–196. doi: 10.1007/BF02179139. [DOI] [PubMed] [Google Scholar]
  13. McGovern M. M., Aula P., Desnick R. J. Purification and properties of human hepatic aspartylglucosaminidase. J Biol Chem. 1983 Sep 10;258(17):10743–10747. [PubMed] [Google Scholar]
  14. Mononen I., Heisterkamp N., Kaartinen V., Williams J. C., Yates J. R., 3rd, Griffin P. R., Hood L. E., Groffen J. Aspartylglycosaminuria in the Finnish population: identification of two point mutations in the heavy chain of glycoasparaginase. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2941–2945. doi: 10.1073/pnas.88.7.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Opheim D. J., Touster O. Lysosomal alpha-D-mannosidase of rat liver. Purification and comparison with the golgi and cytosolic alpha-D-mannosidases. J Biol Chem. 1978 Feb 25;253(4):1017–1023. [PubMed] [Google Scholar]
  16. Tarentino A. L., Maley F. The purification and properties of a beta-aspartyl N-acetylglucosylamine amidohydrolase from hen oviduct. Arch Biochem Biophys. 1969 Mar;130(1):295–303. doi: 10.1016/0003-9861(69)90036-8. [DOI] [PubMed] [Google Scholar]
  17. Tarentino A. L., Plummer T. H., Jr, Maley F. The isolation and structure of the core oligosaccharide sequences of IgM. Biochemistry. 1975 Dec 16;14(25):5516–5523. doi: 10.1021/bi00696a021. [DOI] [PubMed] [Google Scholar]
  18. Thornton J. M. Disulphide bridges in globular proteins. J Mol Biol. 1981 Sep 15;151(2):261–287. doi: 10.1016/0022-2836(81)90515-5. [DOI] [PubMed] [Google Scholar]
  19. Tollersrud O. K., Aronson N. N., Jr Purification and characterization of rat liver glycosylasparaginase. Biochem J. 1989 May 15;260(1):101–108. doi: 10.1042/bj2600101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zingde S. M., Shirsat N. V., Gothoskar B. P. Peptide mapping of proteins in gel bands after partial cleavage with acidic cyanogen bromide vapors. Anal Biochem. 1986 May 15;155(1):10–13. doi: 10.1016/0003-2697(86)90216-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES