Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Feb 15;282(Pt 1):139–145. doi: 10.1042/bj2820139

Phosphorylation of the C-terminal domain of the Na+/H+ exchanger by Ca2+/calmodulin-dependent protein kinase II.

L Fliegel 1, M P Walsh 1, D Singh 1, C Wong 1, A Barr 1
PMCID: PMC1130900  PMID: 1311552

Abstract

The Na+/H+ exchanger is a pH-regulatory protein that extrudes one H+ ion in exchange for one Na+ ion when intracellular pH declines. A number of studies have shown phorbol ester stimulation of activity in intact cells, leading to the idea that the exchanger is regulated by protein kinase C-mediated phosphorylation in vivo. cDNA encoding the protein has been cloned, and a recent model suggests a large internal cytoplasmic C-terminal domain that may be a site of regulation of the exchanger [Sardet, Franchi & Pouyssegur (1989) Cell 56, 271-280]. We examined this region of the protein using a rabbit cardiac Na+/H+ exchanger cDNA clone. cDNA of the Na+/H+ exchanger, coding for the C-terminal 178 amino acid residues, was cloned into the expression vector pEX-1 and expressed as a fusion protein with beta-galactosidase. The fusion protein reacted with an antibody produced against a synthetic peptide of the C-terminal 13 amino acid residues of the Na+/H+ exchanger, confirming the identity of the expressed protein. Control and experimental pEX-1-Na+/H+ exchanger protein was purified on a p-aminophenyl beta-D-thiogalactopyranoside-agarose column. Purified Ca2+/calmodulin-dependent protein kinase II readily phosphorylated the Na+/H+ exchanger protein in a Ca(2+)- and calmodulin-dependent manner in vitro, but this region of the protein was not a substrate for purified protein kinase C or for the catalytic subunit of cyclic AMP-dependent protein kinase. Control-expressed beta-galactosidase was phosphorylated to a maximal level of 0.77 +/- 0.17 mol of Pi/mol (mean +/- S.E.M., n = 6) whereas the fusion protein was phosphorylated to a maximal level of 4.09 +/- 0.39 mol of Pi/mol (n = 6), suggesting one site of phosphorylation in beta-galactosidase and three in the C-terminal domain of the Na+/H+ exchanger. Examination of the deduced amino acid sequence of this part of the exchanger reveals three consensus sequences for Ca2+/calmodulin-dependent protein kinase II. These results suggest that the exchanger may be directly regulated in vivo by calmodulin-dependent protein kinase II but not by protein kinase C or cyclic AMP-dependent protein kinase.

Full text

PDF
139

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber D. L., McGuire M. E., Ganz M. B. Beta-adrenergic and somatostatin receptors regulate Na-H exchange independent of cAMP. J Biol Chem. 1989 Dec 15;264(35):21038–21042. [PubMed] [Google Scholar]
  2. Berk B. C., Aronow M. S., Brock T. A., Cragoe E., Jr, Gimbrone M. A., Jr, Alexander R. W. Angiotensin II-stimulated Na+/H+ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C-dependent and -independent pathways. J Biol Chem. 1987 Apr 15;262(11):5057–5064. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. E., Reinlib L., Watson A. J., Gorelick F., Rys-Sikora K., Tse M., Rood R. P., Czernik A. J., Sharp G. W., Donowitz M. Rabbit ileal villus cell brush border Na+/H+ exchange is regulated by Ca2+/calmodulin-dependent protein kinase II, a brush border membrane protein. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8990–8994. doi: 10.1073/pnas.87.22.8990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demaille J. G., Peters K. A., Fischer E. H. Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1977 Jul 12;16(14):3080–3086. doi: 10.1021/bi00633a006. [DOI] [PubMed] [Google Scholar]
  6. Fliegel L., Burns K., Opas M., Michalak M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989 Jun 26;982(1):1–8. doi: 10.1016/0005-2736(89)90166-1. [DOI] [PubMed] [Google Scholar]
  7. Fliegel L., Leberer E., Green N. M., MacLennan D. H. The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEBS Lett. 1989 Jan 2;242(2):297–300. doi: 10.1016/0014-5793(89)80488-0. [DOI] [PubMed] [Google Scholar]
  8. Fliegel L., Sardet C., Pouyssegur J., Barr A. Identification of the protein and cDNA of the cardiac Na+/H+ exchanger. FEBS Lett. 1991 Feb 11;279(1):25–29. doi: 10.1016/0014-5793(91)80241-t. [DOI] [PubMed] [Google Scholar]
  9. Fowler A. V., Zabin I. The amino acid sequence of beta-galactosidase of Escherichia coli. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1507–1510. doi: 10.1073/pnas.74.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Green R. D., Frelin C., Vigne P., Lazdunski M. The activity of the Na+/H+ antiporter in cultured cardiac cells is dependent on the culture conditions used. FEBS Lett. 1986 Feb 3;196(1):163–166. doi: 10.1016/0014-5793(86)80234-4. [DOI] [PubMed] [Google Scholar]
  11. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  13. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  14. Hendey B., Mamrack M. D., Putnam R. W. Thrombin induces a calcium transient that mediates an activation of the Na+/H+ exchanger in human fibroblasts. J Biol Chem. 1989 Nov 25;264(33):19540–19547. [PubMed] [Google Scholar]
  15. Hesketh T. R., Moore J. P., Morris J. D., Taylor M. V., Rogers J., Smith G. A., Metcalfe J. C. A common sequence of calcium and pH signals in the mitogenic stimulation of eukaryotic cells. Nature. 1985 Feb 7;313(6002):481–484. doi: 10.1038/313481a0. [DOI] [PubMed] [Google Scholar]
  16. Hogue D., Michalak M., Fliegel L. The role of ion antiporters in the maintenance of intracellular pH in rat vascular smooth muscle cells. Mol Cell Biochem. 1991 Apr 10;102(2):125–137. doi: 10.1007/BF00234570. [DOI] [PubMed] [Google Scholar]
  17. Huang C. L., Cogan M. G., Cragoe E. J., Jr, Ives H. E. Thrombin activation of the Na+/H+ exchanger in vascular smooth muscle cells. Evidence for a kinase C-independent pathway which is Ca2+-dependent and pertussis toxin-sensitive. J Biol Chem. 1987 Oct 15;262(29):14134–14140. [PubMed] [Google Scholar]
  18. Kahn A. M., Dolson G. M., Hise M. K., Bennett S. C., Weinman E. J. Parathyroid hormone and dibutyryl cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am J Physiol. 1985 Feb;248(2 Pt 2):F212–F218. doi: 10.1152/ajprenal.1985.248.2.F212. [DOI] [PubMed] [Google Scholar]
  19. Kemp B. E., Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. doi: 10.1016/0968-0004(90)90073-k. [DOI] [PubMed] [Google Scholar]
  20. Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
  21. Krulwich T. A. Na+/H+ antiporters. Biochim Biophys Acta. 1983 Dec 30;726(4):245–264. doi: 10.1016/0304-4173(83)90011-3. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Little P. J., Weissberg P. L., Cragoe E. J., Jr, Bobik A. Dependence of Na+/H+ antiport activation in cultured rat aortic smooth muscle on calmodulin, calcium, and ATP. Evidence for the involvement of calmodulin-dependent kinases. J Biol Chem. 1988 Nov 15;263(32):16780–16786. [PubMed] [Google Scholar]
  24. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  25. Michalak M., Fliegel L., Wlasichuk K. Isolation and characterization of calcium binding glycoproteins of cardiac sarcolemmal vesicles. J Biol Chem. 1990 Apr 5;265(10):5869–5874. [PubMed] [Google Scholar]
  26. Morell G., Steplock D., Shenolikar S., Weinman E. J. Identification of a putative Na(+)-H+ exchanger regulatory cofactor in rabbit renal BBM. Am J Physiol. 1990 Dec;259(6 Pt 2):F867–F871. doi: 10.1152/ajprenal.1990.259.6.F867. [DOI] [PubMed] [Google Scholar]
  27. Muldoon L. L., Dinerstein R. J., Villereal M. L. Intracellular pH in human fibroblasts: effect of mitogens, A23187, and phospholipase activation. Am J Physiol. 1985 Jul;249(1 Pt 1):C140–C148. doi: 10.1152/ajpcell.1985.249.1.C140. [DOI] [PubMed] [Google Scholar]
  28. Owen N. E., Knapik J., Strebel F., Tarpley W. G., Gorman R. R. Regulation of Na+-H+ exchange in normal NIH-3T3 cells and in NIH-3T3 cells expressing the ras oncogene. Am J Physiol. 1989 Apr;256(4 Pt 1):C756–C763. doi: 10.1152/ajpcell.1989.256.4.C756. [DOI] [PubMed] [Google Scholar]
  29. Rood R. P., Emmer E., Wesolek J., McCullen J., Husain Z., Cohen M. E., Braithwaite R. S., Murer H., Sharp G. W., Donowitz M. Regulation of the rabbit ileal brush-border Na+/H+ exchanger by an ATP-requiring Ca++/calmodulin-mediated process. J Clin Invest. 1988 Sep;82(3):1091–1097. doi: 10.1172/JCI113665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ross W., Bertrand W., Morrison A. A photoactivatable probe for the Na+/H+ exchanger cross-links a 66-kDa renal brush border membrane protein. J Biol Chem. 1990 Apr 5;265(10):5341–5344. [PubMed] [Google Scholar]
  31. Sardet C., Counillon L., Franchi A., Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990 Feb 9;247(4943):723–726. doi: 10.1126/science.2154036. [DOI] [PubMed] [Google Scholar]
  32. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  33. Scott-Woo G. C., Sutherland C., Walsh M. P. Kinase activity associated with caldesmon is Ca2+/calmodulin-dependent kinase II. Biochem J. 1990 Jun 1;268(2):367–370. doi: 10.1042/bj2680367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Villereal M. L. Sodium fluxes in human fibroblasts: effect of serum, Ca+2, and amiloride. J Cell Physiol. 1981 Jun;107(3):359–369. doi: 10.1002/jcp.1041070307. [DOI] [PubMed] [Google Scholar]
  36. Walsh M. P., Hinkins S., Dabrowska R., Hartshorne D. J. Smooth muscle myosin light chain kinase. Methods Enzymol. 1983;99:279–288. doi: 10.1016/0076-6879(83)99063-8. [DOI] [PubMed] [Google Scholar]
  37. Weinman E. J., Dubinsky W. P., Fisher K., Steplock D., Dinh Q., Chang L., Shenolikar S. Regulation of reconstituted renal Na+/H+ exchanger by calcium-dependent protein kinases. J Membr Biol. 1988 Aug;103(3):237–244. doi: 10.1007/BF01993983. [DOI] [PubMed] [Google Scholar]
  38. Weinman E. J., Dubinsky W. P., Shenolikar S. Reconstitution of cAMP-dependent protein kinase regulated renal Na+-H+ exchanger. J Membr Biol. 1988;101(1):11–18. doi: 10.1007/BF01872815. [DOI] [PubMed] [Google Scholar]
  39. Weinman E. J., Shenolikar S., Kahn A. M. cAMP-associated inhibition of Na+-H+ exchanger in rabbit kidney brush-border membranes. Am J Physiol. 1987 Jan;252(1 Pt 2):F19–F25. doi: 10.1152/ajprenal.1987.252.1.F19. [DOI] [PubMed] [Google Scholar]
  40. Weissberg P. L., Little P. J., Cragoe E. J., Jr, Bobik A. The pH of spontaneously beating cultured rat heart cells is regulated by an ATP-calmodulin-dependent Na+/H+ antiport. Circ Res. 1989 Apr;64(4):676–685. doi: 10.1161/01.res.64.4.676. [DOI] [PubMed] [Google Scholar]
  41. Winder S., Walsh M. Inhibition of the actomyosin MgATPase by chicken gizzard calponin. Prog Clin Biol Res. 1990;327:141–148. [PubMed] [Google Scholar]
  42. Wolf M., Cuatrecasas P., Sahyoun N. Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP. J Biol Chem. 1985 Dec 15;260(29):15718–15722. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES