Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Feb 15;282(Pt 1):237–242. doi: 10.1042/bj2820237

Myosin heavy-chain composition in striated muscle after tenotomy.

A Jakubiec-Puka 1, C Catani 1, U Carraro 1
PMCID: PMC1130913  PMID: 1540139

Abstract

The myosin heavy-chain (MHC) isoform pattern was studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (gastrocnemius) muscles of adult rats during atrophy after tenotomy and recovery after tendon regeneration. The tenotomized slow muscle atrophied more than the tenotomized fast muscle. During the 12 days after tenotomy the total MHC content decreased by about 85% in the slow muscle, and only by about 35% in the fast muscle. In the slow muscle the ratio of MHC-1 to MHC-2A(2S) remained almost unchanged, showing that similar diminution of both isoforms occurs. In the fast muscle the MHC-2A/MHC-2B ratio decreased, showing the loss of MHC-2A mainly. After tendon regeneration, the slow muscle recovered earlier than the fast muscle. Full recovery of the muscles was not observed until up to 4 months later. The embryonic MHC, which seems to be expressed in denervated adult muscle fibres, was not detected by immunoblotting in the tenotomized muscles during either atrophy or recovery after tendon regeneration. The influence of tenotomy and denervation on expression of the MHC isoforms is compared. The results show that: (a) MHC-1 and MHC-2A(2S) are very sensitive to tenotomy, whereas MHC-2B is much less sensitive; (b) expression of the embryonic MHC in adult muscle seems to be inhibited by the intact neuromuscular junction.

Full text

PDF
237

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. H., Hall-Craggs E. C. Changes in length of sarcomeres following tenotomy of the rat soleus muscle. Anat Rec. 1978 Sep;192(1):55–58. doi: 10.1002/ar.1091920105. [DOI] [PubMed] [Google Scholar]
  2. Baker J. H., Poindextor C. E. Muscle regeneration following segmental necrosis in tenotomized muscle fibers. Muscle Nerve. 1991 Apr;14(4):348–357. doi: 10.1002/mus.880140410. [DOI] [PubMed] [Google Scholar]
  3. Baker J. H. The development of central cores in both fiber types in tenotomized muscle. Muscle Nerve. 1985 Feb;8(2):115–119. doi: 10.1002/mus.880080206. [DOI] [PubMed] [Google Scholar]
  4. Bär A., Pette D. Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett. 1988 Aug 1;235(1-2):153–155. doi: 10.1016/0014-5793(88)81253-5. [DOI] [PubMed] [Google Scholar]
  5. Carraro U., Catani C. A sensitive SDS-PAGE method separating myosin heavy chain isoforms of rat skeletal muscles reveals the heterogeneous nature of the embryonic myosin. Biochem Biophys Res Commun. 1983 Nov 15;116(3):793–802. doi: 10.1016/s0006-291x(83)80212-5. [DOI] [PubMed] [Google Scholar]
  6. Carraro U. Contractile proteins of fatigue-resistant muscle. Semin Thorac Cardiovasc Surg. 1991 Apr;3(2):111–115. [PubMed] [Google Scholar]
  7. Carraro U., Dalla Libera L., Catani C. Myosin light and heavy chains in muscle regenerating in absence of the nerve: transient appearance of the embryonic light chain. Exp Neurol. 1983 Jan;79(1):106–117. doi: 10.1016/0014-4886(83)90382-5. [DOI] [PubMed] [Google Scholar]
  8. Carraro U., Morale D., Mussini I., Lucke S., Cantini M., Betto R., Catani C., Dalla Libera L., Danieli Betto D., Noventa D. Chronic denervation of rat hemidiaphragm: maintenance of fiber heterogeneity with associated increasing uniformity of myosin isoforms. J Cell Biol. 1985 Jan;100(1):161–174. doi: 10.1083/jcb.100.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cerny L. C., Bandman E. Expression of myosin heavy chain isoforms in regenerating myotubes of innervated and denervated chicken pectoral muscle. Dev Biol. 1987 Feb;119(2):350–362. doi: 10.1016/0012-1606(87)90040-6. [DOI] [PubMed] [Google Scholar]
  10. Danieli Betto D., Zerbato E., Betto R. Type 1, 2A, and 2B myosin heavy chain electrophoretic analysis of rat muscle fibers. Biochem Biophys Res Commun. 1986 Jul 31;138(2):981–987. doi: 10.1016/s0006-291x(86)80592-7. [DOI] [PubMed] [Google Scholar]
  11. Edman K. A., Reggiani C., Schiaffino S., te Kronnie G. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres. J Physiol. 1988 Jan;395:679–694. doi: 10.1113/jphysiol.1988.sp016941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fournier M., Roy R. R., Perham H., Simard C. P., Edgerton V. R. Is limb immobilization a model of muscle disuse? Exp Neurol. 1983 Apr;80(1):147–156. doi: 10.1016/0014-4886(83)90011-0. [DOI] [PubMed] [Google Scholar]
  13. Harris A. J., Fitzsimons R. B., McEwan J. C. Neural control of the sequence of expression of myosin heavy chain isoforms in foetal mammalian muscles. Development. 1989 Dec;107(4):751–769. doi: 10.1242/dev.107.4.751. [DOI] [PubMed] [Google Scholar]
  14. Hikida R. S. Tenotomy of the avian anterior latissimus dorsi muscle. II. Can regeneration from the stump occur in the pigeon? Am J Anat. 1981 Apr;160(4):409–418. doi: 10.1002/aja.1001600405. [DOI] [PubMed] [Google Scholar]
  15. Hunt C. C. Mammalian muscle spindle: peripheral mechanisms. Physiol Rev. 1990 Jul;70(3):643–663. doi: 10.1152/physrev.1990.70.3.643. [DOI] [PubMed] [Google Scholar]
  16. Jakubiec-Puka A., Carraro U. Remodelling of the contractile apparatus of striated muscle stimulated electrically in a shortened position. J Anat. 1991 Oct;178:83–100. [PMC free article] [PubMed] [Google Scholar]
  17. Jakubiec-Puka A., Kordowska J., Catani C., Carraro U. Myosin heavy chain isoform composition in striated muscle after denervation and self-reinnervation. Eur J Biochem. 1990 Nov 13;193(3):623–628. doi: 10.1111/j.1432-1033.1990.tb19379.x. [DOI] [PubMed] [Google Scholar]
  18. Jakubiec-Puka A., Kulesza-Lipka D., Kordowska J. The contractile apparatus of striated muscle in the course of atrophy and regeneration. II. Myosin and actin filaments in mature rat soleus muscle regenerating after reinnervation. Cell Tissue Res. 1982;227(3):641–650. doi: 10.1007/BF00204794. [DOI] [PubMed] [Google Scholar]
  19. Jakubiec-Puka A., Kulesza-Lipka D., Krajewski K. The contractile apparatus of striated muscle in the course of atrophy and regeneration. I. Myosin and actin filaments in the denervated rat soleus. Cell Tissue Res. 1981;220(3):651–663. doi: 10.1007/BF00216767. [DOI] [PubMed] [Google Scholar]
  20. Jiang B., Klueber K. M. Structural and functional analysis of murine skeletal muscle after castration. Muscle Nerve. 1989 Jan;12(1):67–77. doi: 10.1002/mus.880120113. [DOI] [PubMed] [Google Scholar]
  21. Józsa L., Kvist M., Kannus P., Järvinen M. The effect of tenotomy and immobilization on muscle spindles and tendon organs of the rat calf muscles. A histochemical and morphometrical study. Acta Neuropathol. 1988;76(5):465–470. doi: 10.1007/BF00686385. [DOI] [PubMed] [Google Scholar]
  22. Kirschbaum B. J., Schneider S., Izumo S., Mahdavi V., Nadal-Ginard B., Pette D. Rapid and reversible changes in myosin heavy chain expression in response to increased neuromuscular activity of rat fast-twitch muscle. FEBS Lett. 1990 Jul 30;268(1):75–78. doi: 10.1016/0014-5793(90)80976-p. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. LaFramboise W. A., Daood M. J., Guthrie R. D., Moretti P., Schiaffino S., Ontell M. Electrophoretic separation and immunological identification of type 2X myosin heavy chain in rat skeletal muscle. Biochim Biophys Acta. 1990 Jul 20;1035(1):109–112. doi: 10.1016/0304-4165(90)90181-u. [DOI] [PubMed] [Google Scholar]
  25. Leary J. J., Brigati D. J., Ward D. C. Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4045–4049. doi: 10.1073/pnas.80.13.4045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maréchal G., Schwartz K., Beckers-Bleukx G., Ghins E. Isozymes of myosin in growing and regenerating rat muscles. Eur J Biochem. 1984 Jan 16;138(2):421–428. doi: 10.1111/j.1432-1033.1984.tb07932.x. [DOI] [PubMed] [Google Scholar]
  27. McLachlan E. M. Rapid atrophy of mouse soleus muscles after tenotomy depends on an intact innervation. Neurosci Lett. 1981 Sep 25;25(3):269–274. doi: 10.1016/0304-3940(81)90403-1. [DOI] [PubMed] [Google Scholar]
  28. Pette D., Staron R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1–76. doi: 10.1007/3540528806_3. [DOI] [PubMed] [Google Scholar]
  29. Riley D. A., Slocum G. R., Bain J. L., Sedlak F. R., Sowa T. E., Mellender J. W. Rat hindlimb unloading: soleus histochemistry, ultrastructure, and electromyography. J Appl Physiol (1985) 1990 Jul;69(1):58–66. doi: 10.1152/jappl.1990.69.1.58. [DOI] [PubMed] [Google Scholar]
  30. Schiaffino S., Gorza L., Pitton G., Saggin L., Ausoni S., Sartore S., Lømo T. Embryonic and neonatal myosin heavy chain in denervated and paralyzed rat skeletal muscle. Dev Biol. 1988 May;127(1):1–11. doi: 10.1016/0012-1606(88)90183-2. [DOI] [PubMed] [Google Scholar]
  31. Schiaffino S., Gorza L., Sartore S., Saggin L., Carli M. Embryonic myosin heavy chain as a differentiation marker of developing human skeletal muscle and rhabdomyosarcoma. A monoclonal antibody study. Exp Cell Res. 1986 Mar;163(1):211–220. doi: 10.1016/0014-4827(86)90574-4. [DOI] [PubMed] [Google Scholar]
  32. Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev. 1986 Jul;66(3):710–771. doi: 10.1152/physrev.1986.66.3.710. [DOI] [PubMed] [Google Scholar]
  33. Tomanek R. J., Cooper R. R. Ultrastructural changes in tenotomized fast- and slow-twitch muscle fibres. J Anat. 1972 Dec;113(Pt 3):409–424. [PMC free article] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. VRBOVA G. Changes in the motor reflexes produced by tenotomy. J Physiol. 1963 Apr;166:241–250. doi: 10.1113/jphysiol.1963.sp007103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  37. Weydert A., Barton P., Harris A. J., Pinset C., Buckingham M. Developmental pattern of mouse skeletal myosin heavy chain gene transcripts in vivo and in vitro. Cell. 1987 Apr 10;49(1):121–129. doi: 10.1016/0092-8674(87)90762-8. [DOI] [PubMed] [Google Scholar]
  38. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]
  39. Williams P. E., Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat. 1973 Oct;116(Pt 1):45–55. [PMC free article] [PubMed] [Google Scholar]
  40. d'Albis A., Couteaux R., Janmot C., Roulet A., Mira J. C. Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Myosin isoform analysis. Eur J Biochem. 1988 May 16;174(1):103–110. doi: 10.1111/j.1432-1033.1988.tb14068.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES