Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 May 1;283(Pt 3):691–698. doi: 10.1042/bj2830691

Biochemical studies on the activity of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Streptomyces clavuligerus.

J Zhang 1, S Wolfe 1, A L Demain 1
PMCID: PMC1130941  PMID: 1590759

Abstract

The enzyme activity of purified delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase from Streptomyces clavuligerus was studied biochemically. The dependence of ACV synthetase activity on reaction parameters, including substrates, cofactors, temperature and pH, were determined, resulting in a substantially increased enzyme activity. The activity is very labile to high temperature and is also unstable at acidic pH. The enzyme specificity is strict towards L-alpha-aminoadipate, but rather loose with respect to L-valine; certain modifications of L-cysteine can also be tolerated. Some unnatural tripeptides synthesized by ACV synthetase can be converted into bioactive compounds by isopenicillin N synthase. The only nutrient found to negatively affect ACV synthetase activity is phosphate, but various compounds such as thiol-blocking reagents and ATP-utilization products (AMP and pyrophosphate) are inhibitory to the enzyme.

Full text

PDF
691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. E., Bird J. W., Field R. A., O'Callaghan N. M., Schofield C. J. Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. J Antibiot (Tokyo) 1990 Aug;43(8):1055–1057. doi: 10.7164/antibiotics.43.1055. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. E., Killin S. J., Pratt A. J., Sutherland J. D., Turner N. J., Crabbe M. J., Abraham E. P., Willis A. C. Purification and characterization of cloned isopenicillin N synthetase. J Antibiot (Tokyo) 1987 May;40(5):652–659. doi: 10.7164/antibiotics.40.652. [DOI] [PubMed] [Google Scholar]
  3. Banko G., Wolfe S., Demain A. L. Cell-free synthesis of delta-(L-alpha-aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem Biophys Res Commun. 1986 May 29;137(1):528–535. doi: 10.1016/0006-291x(86)91242-8. [DOI] [PubMed] [Google Scholar]
  4. Banko G., Wolfe S., Demain A. L. Cell-free synthesis of delta-(L-alpha-aminoadipyl)-L-cysteine, the first intermediate of penicillin and cephalosporin biosynthesis. Biochem Biophys Res Commun. 1986 May 29;137(1):528–535. doi: 10.1016/0006-291x(86)91242-8. [DOI] [PubMed] [Google Scholar]
  5. Bowers R. J., Jensen S. E., Lyubechansky L., Westlake D. W., Wolfe S. Enzymatic synthesis of the penicillin and cephalosporin nuclei from an acyclic peptide containing carboxymethylcysteine. Biochem Biophys Res Commun. 1984 Apr 30;120(2):607–613. doi: 10.1016/0006-291x(84)91298-1. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Eriquez L. A., Pisano M. A. Isolation and nature of intracellular alpha-aminoadipic acid-containing peptides from Paecilomyces persicinus P-10. Antimicrob Agents Chemother. 1979 Sep;16(3):392–397. doi: 10.1128/aac.16.3.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  9. Kupka J., Shen Y. Q., Wolfe S., Demain A. L. Studies on the ring-cyclization and ring-expansion enzymes of beta-lactam biosynthesis in Cephalosporium acremonium. Can J Microbiol. 1983 May;29(5):488–496. doi: 10.1139/m83-078. [DOI] [PubMed] [Google Scholar]
  10. Lara F., del Carmen Mateos R., Vázquez G., Sánchez S. Induction of penicillin biosynthesis by L-glutamate in penicillium chrysogenum. Biochem Biophys Res Commun. 1982 Mar 15;105(1):172–178. doi: 10.1016/s0006-291x(82)80027-2. [DOI] [PubMed] [Google Scholar]
  11. Lipmann F. Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv Microb Physiol. 1980;21:227–266. doi: 10.1016/s0065-2911(08)60357-4. [DOI] [PubMed] [Google Scholar]
  12. Piret J., Resendiz B., Mahro B., Zhang J. Y., Serpe E., Romero J., Connors N., Demain A. L. Characterization and complementation of a cephalosporin-deficient mutant of Streptomyces clavuligerus NRRL 3585. Appl Microbiol Biotechnol. 1990 Feb;32(5):560–567. doi: 10.1007/BF00173728. [DOI] [PubMed] [Google Scholar]
  13. Wolfe S., Lübbe C., Jensen S. E., Hernandez H., Demain A. L. Effect of side-chain substitution of a CH2 group by sulfur on the antimicrobial activity of natural penicillins and cephalosporins. J Antibiot (Tokyo) 1985 Nov;38(11):1550–1554. doi: 10.7164/antibiotics.38.1550. [DOI] [PubMed] [Google Scholar]
  14. van Liempt H., von Döhren H., Kleinkauf H. delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Aspergillus nidulans. The first enzyme in penicillin biosynthesis is a multifunctional peptide synthetase. J Biol Chem. 1989 Mar 5;264(7):3680–3684. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES