Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 May 1;283(Pt 3):913–917. doi: 10.1042/bj2830913

Epithelial sphingolipid sorting allows for extensive variation of the fatty acyl chain and the sphingosine backbone.

W van't Hof 1, J Silvius 1, F Wieland 1, G van Meer 1
PMCID: PMC1130974  PMID: 1590779

Abstract

In kidney MDCK and intestinal Caco-2 epithelial cells, glucosylceramide (GlcCer) and sphingomyelin (SPH) synthesized from the short-chain sphingolipid analogue N-6-[7-nitro-2,1,3-benzoxadiazol-4-yl]aminodecanoyl (C6-NBD)-ceramide are delivered to the cell surface with apical/basolateral polarities of 2-4 and 0.6-0.9 respectively. We have tested how variations in the lipid backbone affect these polarities. First, the C6-NBD moiety was replaced by a bare [14C]octanoyl chain or by the even more bulky fluorophores 8-bimanoylthio-octanoyl (C8-bimane) and 8-diethylaminocoumarin-octanoyl (C8-DECA). In addition, the sphingosine in C6-NBD-ceramide was changed in stereoconfiguration (L-threo) or saturation (dihydro). In all cases, GlcCer and SPH were produced and appeared on the cell surface at 37 degrees C, as assayed by back-exchange. The apical/basolateral polarity of the delivery of GlcCer was variable, but always exceeded 1. GlcCer was apically enriched over SPH (2-6 times for MDCK and 3-9 times for Caco-2). Even GlcCer synthesized from a highly water-soluble truncated ceramide (octanoyl-D-erythro-sphingosine analogue with C8 backbone) was enriched apically by a factor of greater than or equal to 2 both in absolute polarity and compared with SPH. Sphingolipid sorting was quantitatively but not qualitatively affected by dramatic changes in the lipid backbone.

Full text

PDF
913

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chattopadhyay A., London E. Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry. 1987 Jan 13;26(1):39–45. doi: 10.1021/bi00375a006. [DOI] [PubMed] [Google Scholar]
  2. Curatolo W. The physical properties of glycolipids. Biochim Biophys Acta. 1987 Jun 24;906(2):111–136. doi: 10.1016/0304-4157(87)90008-6. [DOI] [PubMed] [Google Scholar]
  3. Futerman A. H., Stieger B., Hubbard A. L., Pagano R. E. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J Biol Chem. 1990 May 25;265(15):8650–8657. [PubMed] [Google Scholar]
  4. Gardam M. A., Itovitch J. J., Silvius J. R. Partitioning of exchangeable fluorescent phospholipids and sphingolipids between different lipid bilayer environments. Biochemistry. 1989 Jan 24;28(2):884–893. doi: 10.1021/bi00428a072. [DOI] [PubMed] [Google Scholar]
  5. Griffiths G., Back R., Marsh M. A quantitative analysis of the endocytic pathway in baby hamster kidney cells. J Cell Biol. 1989 Dec;109(6 Pt 1):2703–2720. doi: 10.1083/jcb.109.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Helms J. B., Karrenbauer A., Wirtz K. W., Rothman J. E., Wieland F. T. Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. Secretion of glycosylated tripeptide and truncated sphingomyelin. J Biol Chem. 1990 Nov 15;265(32):20027–20032. [PubMed] [Google Scholar]
  7. Jeckel D., Karrenbauer A., Birk R., Schmidt R. R., Wieland F. Sphingomyelin is synthesized in the cis Golgi. FEBS Lett. 1990 Feb 12;261(1):155–157. doi: 10.1016/0014-5793(90)80659-7. [DOI] [PubMed] [Google Scholar]
  8. Karrenbauer A., Jeckel D., Just W., Birk R., Schmidt R. R., Rothman J. E., Wieland F. T. The rate of bulk flow from the Golgi to the plasma membrane. Cell. 1990 Oct 19;63(2):259–267. doi: 10.1016/0092-8674(90)90159-c. [DOI] [PubMed] [Google Scholar]
  9. Kishimoto Y. A facile synthesis of ceramides. Chem Phys Lipids. 1975 Sep;15(1):33–36. doi: 10.1016/0009-3084(75)90029-8. [DOI] [PubMed] [Google Scholar]
  10. Kobayashi T., Pagano R. E. Lipid transport during mitosis. Alternative pathways for delivery of newly synthesized lipids to the cell surface. J Biol Chem. 1989 Apr 5;264(10):5966–5973. [PubMed] [Google Scholar]
  11. Koval M., Pagano R. E. Lipid recycling between the plasma membrane and intracellular compartments: transport and metabolism of fluorescent sphingomyelin analogues in cultured fibroblasts. J Cell Biol. 1989 Jun;108(6):2169–2181. doi: 10.1083/jcb.108.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipsky N. G., Pagano R. E. A vital stain for the Golgi apparatus. Science. 1985 May 10;228(4700):745–747. doi: 10.1126/science.2581316. [DOI] [PubMed] [Google Scholar]
  13. Lipsky N. G., Pagano R. E. Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane. J Cell Biol. 1985 Jan;100(1):27–34. doi: 10.1083/jcb.100.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pagano R. E., Martin O. C. A series of fluorescent N-acylsphingosines: synthesis, physical properties, and studies in cultured cells. Biochemistry. 1988 Jun 14;27(12):4439–4445. doi: 10.1021/bi00412a034. [DOI] [PubMed] [Google Scholar]
  15. Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  16. Schwarzmann G., Sandhoff K. Lysogangliosides: synthesis and use in preparing labeled gangliosides. Methods Enzymol. 1987;138:319–341. doi: 10.1016/0076-6879(87)38028-0. [DOI] [PubMed] [Google Scholar]
  17. Silvius J. R., Leventis R., Brown P. M., Zuckermann M. Novel fluorescent phospholipids for assays of lipid mixing between membranes. Biochemistry. 1987 Jul 14;26(14):4279–4287. doi: 10.1021/bi00388a015. [DOI] [PubMed] [Google Scholar]
  18. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  19. van 't Hof W., van Meer G. Generation of lipid polarity in intestinal epithelial (Caco-2) cells: sphingolipid synthesis in the Golgi complex and sorting before vesicular traffic to the plasma membrane. J Cell Biol. 1990 Sep;111(3):977–986. doi: 10.1083/jcb.111.3.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Genderen I. L., van Meer G., Slot J. W., Geuze H. J., Voorhout W. F. Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution. J Cell Biol. 1991 Nov;115(4):1009–1019. doi: 10.1083/jcb.115.4.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES