Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Apr 1;283(Pt 1):55–61. doi: 10.1042/bj2830055

Phosphatidylethanolamine metabolism in rat liver after partial hepatectomy. Control of biosynthesis of phosphatidylethanolamine by the availability of ethanolamine.

M Houweling 1, L B Tijburg 1, W J Vaartjes 1, L M van Golde 1
PMCID: PMC1130992  PMID: 1314569

Abstract

The effect of partial (70%) hepatectomy on phosphatidylethanolamine (PE) synthesis was studied in rat liver during the first 4 post-operative days. Between 4 and 96 h after partial hepatectomy, the mass of PE increased from 30% to 80% of sham-operation values. In line with the increase in PE mass, the rate of PE synthesis in vivo from [14C]ethanolamine was stimulated 1.6- and 1.3-fold at 22 and 48 h after partial hepatectomy respectively. Surprisingly, the activity of CTP:phosphoethanolamine cytidylyltransferase (EC 2.7.7.14) was virtually unchanged after partial hepatectomy. In addition, neither ethanolamine kinase (EC 2.7.1.82) nor ethanolaminephosphotransferase (EC 2.7.8.1) showed any changes in activity over the time period studied. Hepatic levels of ethanolamine and phosphoethanolamine were drastically increased after partial hepatectomy, as compared with sham operation, whereas levels of CDP-ethanolamine and microsomal diacylglycerol were not affected. Interestingly, partial hepatectomy caused the concentration of free ethanolamine in serum to increase from 29 microM to approx. 50 microM during the first day after surgery. In hepatocytes isolated from non-operated animals, incorporation of [3H]ethanolamine into PE was stimulated by increasing the ethanolamine concentration from 10 up to 50 microM, whereas the radioactivity associated with phosphoethanolamine only increased at ethanolamine concentrations higher than 30 microM. Taken together, our results indicate that the observed increase in serum ethanolamine concentration after partial hepatectomy is probably responsible for both the increase in PE biosynthesis and the accumulation of ethanolamine and phosphoethanolamine in regenerating liver.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alison M. R. Regulation of hepatic growth. Physiol Rev. 1986 Jul;66(3):499–541. doi: 10.1152/physrev.1986.66.3.499. [DOI] [PubMed] [Google Scholar]
  2. Arthur G., Page L. Synthesis of phosphatidylethanolamine and ethanolamine plasmalogen by the CDP-ethanolamine and decarboxylase pathways in rat heart, kidney and liver. Biochem J. 1991 Jan 1;273(Pt 1):121–125. doi: 10.1042/bj2730121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. BUCHER N. L., SWAFFIELD M. N. THE RATE OF INCORPORATION OF LABELED THYMIDINE INTO THE DEOXYRIBONUCLEIC ACID OF REGENERATING RAT LIVER IN RELATION TO THE AMOUNT OF LIVER EXCISED. Cancer Res. 1964 Oct;24:1611–1625. [PubMed] [Google Scholar]
  6. Bottomley P. A. Human in vivo NMR spectroscopy in diagnostic medicine: clinical tool or research probe? Radiology. 1989 Jan;170(1 Pt 1):1–15. doi: 10.1148/radiology.170.1.2642336. [DOI] [PubMed] [Google Scholar]
  7. Cruise J. L., Knechtle S. J., Bollinger R. R., Kuhn C., Michalopoulos G. Alpha 1-adrenergic effects and liver regeneration. Hepatology. 1987 Nov-Dec;7(6):1189–1194. doi: 10.1002/hep.1840070604. [DOI] [PubMed] [Google Scholar]
  8. Dennis E. A., Kennedy E. P. Intracellular sites of lipid synthesis and the biogenesis of mitochondria. J Lipid Res. 1972 Mar;13(2):263–267. [PubMed] [Google Scholar]
  9. Dixon R. M., Angus P. W., Rajagopalan B., Radda G. K. Abnormal phosphomonoester signals in 31P MR spectra from patients with hepatic lymphoma. A possible marker of liver infiltration and response to chemotherapy. Br J Cancer. 1991 Jun;63(6):953–958. doi: 10.1038/bjc.1991.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fausto N., Mead J. E. Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest. 1989 Jan;60(1):4–13. [PubMed] [Google Scholar]
  11. Ferris G. M., Clark J. B. Early changes in plasma and hepatic free amino acids in partially hepatectomised rats. Biochim Biophys Acta. 1972 Jun 26;273(1):73–79. doi: 10.1016/0304-4165(72)90192-4. [DOI] [PubMed] [Google Scholar]
  12. Fex G. Phospholipid metabolism during regeneration of rat liver. Biochem J. 1970 Oct;119(4):743–747. doi: 10.1042/bj1190743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fex G. The metabolism of liver and plasma lipids after partial hepatectomy in the rat. Biochim Biophys Acta. 1970 May 5;202(3):415–425. doi: 10.1016/0005-2760(70)90112-8. [DOI] [PubMed] [Google Scholar]
  14. GRISHAM J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962 Aug;22:842–849. [PubMed] [Google Scholar]
  15. Goldfine H. Use of a filter-paper disk assay in the measurement of lipid biosynthesis. J Lipid Res. 1966 Jan;7(1):146–149. [PubMed] [Google Scholar]
  16. Gove C. D., Hems D. A. Fatty acid synthesis in the regenerating liver of the rat. Biochem J. 1978 Jan 15;170(1):1–8. doi: 10.1042/bj1700001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Groener J. E., Klein W., Van Golde L. M. The effect of fasting and refeeding on the composition and synthesis of triacylglycerols, phosphatidylcholines, and phosphatidylethanolamines in rat liver. Arch Biochem Biophys. 1979 Nov;198(1):287–295. doi: 10.1016/0003-9861(79)90421-1. [DOI] [PubMed] [Google Scholar]
  18. Gyulai L., Bolinger L., Leigh J. S., Jr, Barlow C., Chance B. Phosphorylethanolamine--the major constituent of the phosphomonoester peak observed by 31P-NMR on developing dog brain. FEBS Lett. 1984 Dec 3;178(1):137–142. doi: 10.1016/0014-5793(84)81257-0. [DOI] [PubMed] [Google Scholar]
  19. Haagsman H. P., van den Heuvel J. M., van Golde L. M., Geelen M. J. Synthesis of phosphatidylcholines in rat hepatocytes. Possible regulation by norepinephrine via an alpha-adrenergic mechanism. J Biol Chem. 1984 Sep 25;259(18):11273–11278. [PubMed] [Google Scholar]
  20. Houweling M., Tijburg L. B., Jamil H., Vance D. E., Nyathi C. B., Vaartjes W. J., van Golde L. M. Phosphatidylcholine metabolism in rat liver after partial hepatectomy. Evidence for increased activity and amount of CTP:phosphocholine cytidylyltransferase. Biochem J. 1991 Sep 1;278(Pt 2):347–351. doi: 10.1042/bj2780347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ide H., Weinhold P. A. Cholinephosphotransferase in rat lung. In vitro formation of dipalmitoylphosphatidylcholine and general lack of selectivity using endogenously generated diacylglycerol. J Biol Chem. 1982 Dec 25;257(24):14926–14931. [PubMed] [Google Scholar]
  22. Iles R. A., Cox I. J., Bell J. D., Dubowitz L. M., Cowan F., Bryant D. J. 31P magnetic resonance spectroscopy of the human paediatric liver. NMR Biomed. 1990 Apr;3(2):90–94. doi: 10.1002/nbm.1940030207. [DOI] [PubMed] [Google Scholar]
  23. Infante J. P., Kinsella J. E. Phospholipid synthesis in mammary tissue. Choline and ethanolamine kinases: kinetic evidence for two discrete active sites. Lipids. 1976 Oct;11(10):727–735. doi: 10.1007/BF02533046. [DOI] [PubMed] [Google Scholar]
  24. Ishidate K., Furusawa K., Nakazawa Y. Complete co-purification of choline kinase and ethanolamine kinase from rat kidney and immunological evidence for both kinase activities residing on the same enzyme protein(s) in rat tissues. Biochim Biophys Acta. 1985 Aug 22;836(1):119–124. [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Lipton B. A., Davidson E. P., Ginsberg B. H., Yorek M. A. Ethanolamine metabolism in cultured bovine aortic endothelial cells. J Biol Chem. 1990 May 5;265(13):7195–7201. [PubMed] [Google Scholar]
  27. Mangiapane E. H., Lloyd-Davies K. A., Brindley D. N. A study of some enzymes of glycerolipid biosynthesis in rat liver after subtotal hepatectomy. Biochem J. 1973 May;134(1):103–112. doi: 10.1042/bj1340103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miller M. A., Kent C. Characterization of the pathways for phosphatidylethanolamine biosynthesis in Chinese hamster ovary mutant and parental cell lines. J Biol Chem. 1986 Jul 25;261(21):9753–9761. [PubMed] [Google Scholar]
  29. Ord M. G., Stocken L. A. Uptake of amino acids and nucleic acid precursors by regenerating rat liver. Biochem J. 1972 Aug;129(1):175–181. doi: 10.1042/bj1290175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
  31. Porter T. J., Kent C. Purification and characterization of choline/ethanolamine kinase from rat liver. J Biol Chem. 1990 Jan 5;265(1):414–422. [PubMed] [Google Scholar]
  32. Samborski R. W., Ridgway N. D., Vance D. E. Evidence that only newly made phosphatidylethanolamine is methylated to phosphatidylcholine and that phosphatidylethanolamine is not significantly deacylated-reacylated in rat hepatocytes. J Biol Chem. 1990 Oct 25;265(30):18322–18329. [PubMed] [Google Scholar]
  33. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  34. Slater T. F., Cheeseman K. H., Benedetto C., Collins M., Emery S., Maddix S. P., Nodes J. T., Proudfoot K., Burton G. W., Ingold K. U. Studies on the hyperplasia ('regeneration') of the rat liver following partial hepatectomy. Changes in lipid peroxidation and general biochemical aspects. Biochem J. 1990 Jan 1;265(1):51–59. doi: 10.1042/bj2650051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sleight R., Kent C. Regulation of phosphatidylcholine biosynthesis in mammalian cells. II. Effects of phospholipase C treatment on the activity and subcellular distribution of CTP:phosphocholine cytidylyltransferase in Chinese hamster ovary and LM cell lines. J Biol Chem. 1983 Jan 25;258(2):831–835. [PubMed] [Google Scholar]
  36. Sundler R., Akesson B., Nilsson A. Effect of different fatty acids on glycerolipid synthesis in isolated rat hepatocytes. J Biol Chem. 1974 Aug 25;249(16):5102–5107. [PubMed] [Google Scholar]
  37. Sundler R., Akesson B., Nilsson A. Quantitative role of base exchange in phosphatidylethanolamine synthesis in isolated rat hepatocytes. FEBS Lett. 1974 Aug 1;43(3):303–307. doi: 10.1016/0014-5793(74)80667-8. [DOI] [PubMed] [Google Scholar]
  38. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  39. Sundler R. Biosynthesis of rat liver phosphatidylethanolamines from intraportally injected ethanolamine. Biochim Biophys Acta. 1973 May 24;306(2):218–226. doi: 10.1016/0005-2760(73)90227-0. [DOI] [PubMed] [Google Scholar]
  40. Tijburg L. B., Geelen M. J., Van Golde L. M. Biosynthesis of phosphatidylethanolamine via the CDP-ethanolamine route is an important pathway in isolated rat hepatocytes. Biochem Biophys Res Commun. 1989 May 15;160(3):1275–1280. doi: 10.1016/s0006-291x(89)80141-x. [DOI] [PubMed] [Google Scholar]
  41. Tijburg L. B., Geelen M. J., van Golde L. M. Regulation of the biosynthesis of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine in the liver. Biochim Biophys Acta. 1989 Jul 17;1004(1):1–19. doi: 10.1016/0005-2760(89)90206-3. [DOI] [PubMed] [Google Scholar]
  42. Tijburg L. B., Houweling M., Geelen J. H., van Golde L. M. Stimulation of phosphatidylethanolamine synthesis in isolated rat hepatocytes by phorbol 12-myristate 13-acetate. Biochim Biophys Acta. 1987 Nov 21;922(2):184–190. doi: 10.1016/0005-2760(87)90153-6. [DOI] [PubMed] [Google Scholar]
  43. Tijburg L. B., Houweling M., Geelen M. J., Van Golde L. M. Inhibition of phosphatidylethanolamine synthesis by glucagon in isolated rat hepatocytes. Biochem J. 1989 Feb 1;257(3):645–650. doi: 10.1042/bj2570645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tijburg L. B., Houweling M., Geelen M. J., van Golde L. M. Effects of dietary conditions on the pool sizes of precursors of phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver. Biochim Biophys Acta. 1988 Mar 4;959(1):1–8. doi: 10.1016/0005-2760(88)90143-9. [DOI] [PubMed] [Google Scholar]
  45. Tijburg L. B., Nyathi C. B., Meijer G. W., Geelen M. J. Biosynthesis and secretion of triacylglycerol in rat liver after partial hepatectomy. Biochem J. 1991 Aug 1;277(Pt 3):723–728. doi: 10.1042/bj2770723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tijburg L. B., Schuurmans E. A., Geelen M. J., van Golde L. M. Effects of vasopressin on the synthesis of phosphatidylethanolamines and phosphatidylcholines by isolated rat hepatocytes. Biochim Biophys Acta. 1987 May 13;919(1):49–57. doi: 10.1016/0005-2760(87)90216-5. [DOI] [PubMed] [Google Scholar]
  47. Tischler M. E., Hecht P., Williamson J. R. Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. Arch Biochem Biophys. 1977 May;181(1):278–293. doi: 10.1016/0003-9861(77)90506-9. [DOI] [PubMed] [Google Scholar]
  48. Van Golde L. M., Fleischer B., Fleischer S. Some studies on the metabolism of phospholipids in Golgi complex from bovine and rat liver in comparison to other subcellular fractions. Biochim Biophys Acta. 1971 Oct 12;249(1):318–330. doi: 10.1016/0005-2736(71)90109-x. [DOI] [PubMed] [Google Scholar]
  49. Voelker D. R. Disruption of phosphatidylserine translocation to the mitochondria in baby hamster kidney cells. J Biol Chem. 1985 Nov 25;260(27):14671–14676. [PubMed] [Google Scholar]
  50. Voelker D. R. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2669–2673. doi: 10.1073/pnas.81.9.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weinhold P. A., Rethy V. B. The separation, purification, and characterization of ethanolamine kinase and choline kinase from rat liver. Biochemistry. 1974 Dec 3;13(25):5135–5141. doi: 10.1021/bi00722a013. [DOI] [PubMed] [Google Scholar]
  52. Zeisel S. H., Wurtman R. J. Developmental changes in rat blood choline concentration. Biochem J. 1981 Sep 15;198(3):565–570. doi: 10.1042/bj1980565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. den Breejen J. N., Batenburg J. J., van Golde L. M. The species of acyl-CoA in subcellular fractions of type II cells isolated from adult rat lung and their incorporation into phosphatidic acid. Biochim Biophys Acta. 1989 Apr 26;1002(3):277–282. doi: 10.1016/0005-2760(89)90341-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES