Abstract
Challenge of intact hepatocytes with one of the hormones vasopressin, angiotensin and glucagon or with the phorbol ester phorbol 12-myristate 13-acetate (PMA) led to a rapid increase in the activity of protein kinase C found in both cytosol and membrane fractions. Maximal activation by hormones occurred within 1-6 min of challenge of cells, after which activity declined. In membrane fractions protein kinase C activity return to basal levels some 15 min after exposure of cells to either angiotensin or glucagon. In cytosol fractions of cells challenged with hormones a second phase of activation ensued after about 10 min, with levels of protein kinase C activity remaining elevated above basal level 15 min afterwards. Activity changes elicited by PMA were rather different; it took about 15 min to achieve maximal activation of cytosolic protein kinase C activity. In membranes of cells challenged with PMA, an initial rapid and transient activation was followed by a sustained increase in activity occurring about 10 min after exposure of cells to this ligand. Only when hepatocytes were challenged with PMA was the translocation of protein kinase C from the cytosol to membrane fraction observed. The kinetics of PMA-induced translocation suggested that it accounted for the second phase of the increase in membrane protein kinase C activity which was unique to this ligand.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamo S., Caporale C., Aguanno S., Lazdins J., Faggioni A., Belli L., Cortesi E., Nervi C., Gastaldi R., Molinaro M. Proliferating and quiescent cells exhibit different subcellular distribution of protein kinase C activity. FEBS Lett. 1986 Jan 20;195(1-2):352–356. doi: 10.1016/0014-5793(86)80192-2. [DOI] [PubMed] [Google Scholar]
- Ashendel C. L. The phorbol ester receptor: a phospholipid-regulated protein kinase. Biochim Biophys Acta. 1985 Sep 9;822(2):219–242. doi: 10.1016/0304-4157(85)90009-7. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
- Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnbaum M. J., Fain J. N. Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines. J Biol Chem. 1977 Jan 25;252(2):528–535. [PubMed] [Google Scholar]
- Blackmore P. F., Exton J. H. Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate. J Biol Chem. 1986 Aug 25;261(24):11056–11063. [PubMed] [Google Scholar]
- Bocckino S. B., Blackmore P. F., Exton J. H. Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J Biol Chem. 1985 Nov 15;260(26):14201–14207. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bushfield M., Griffiths S. L., Murphy G. J., Pyne N. J., Knowler J. T., Milligan G., Parker P. J., Mollner S., Houslay M. D. Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepatocytes. Biochem J. 1990 Oct 15;271(2):365–372. doi: 10.1042/bj2710365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper D. R., Konda T. S., Standaert M. L., Davis J. S., Pollet R. J., Farese R. V. Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes. J Biol Chem. 1987 Mar 15;262(8):3633–3639. [PubMed] [Google Scholar]
- Cote T. E., Epand R. M. Nalpha-trinitrophenyl glucagon: an inhibitor of glucagon-stimulated cyclic AMP production and its effects on glycogenolysis. Biochim Biophys Acta. 1979 Jan 18;582(2):295–306. doi: 10.1016/0304-4165(79)90392-1. [DOI] [PubMed] [Google Scholar]
- Cárdenas-Tanús R. J., Huerta-Bahena J., García-Sáinz J. A. Angiotensin II inhibits the accumulation of cyclic AMP produced by glucagon but not its metabolic effects. FEBS Lett. 1982 Jun 21;143(1):1–4. doi: 10.1016/0014-5793(82)80259-7. [DOI] [PubMed] [Google Scholar]
- Draznin B., Leitner J. W., Sussman K. E., Sherman N. A. Insulin and glucose modulate protein kinase C activity in rat adipocytes. Biochem Biophys Res Commun. 1988 Oct 14;156(1):570–575. doi: 10.1016/s0006-291x(88)80880-5. [DOI] [PubMed] [Google Scholar]
- Egan J. J., Saltis J., Wek S. A., Simpson I. A., Londos C. Insulin, oxytocin, and vasopressin stimulate protein kinase C activity in adipocyte plasma membranes. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1052–1056. doi: 10.1073/pnas.87.3.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fabbro D., Jungmann R. A., Eppenberger U. Subcellular distribution of protein kinase C of GH3 cells: quantitation and characterization by polyacrylamide gel electrophoresis. Arch Biochem Biophys. 1985 May 15;239(1):102–111. doi: 10.1016/0003-9861(85)90816-1. [DOI] [PubMed] [Google Scholar]
- Fry M. J., Gebhardt A., Parker P. J., Foulkes J. G. Phosphatidylinositol turnover and transformation of cells by Abelson murine leukaemia virus. EMBO J. 1985 Dec 1;4(12):3173–3178. doi: 10.1002/j.1460-2075.1985.tb04061.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyworth C. M., Houslay M. D. Challenge of hepatocytes by glucagon triggers a rapid modulation of adenylate cyclase activity in isolated membranes. Biochem J. 1983 Jul 15;214(1):93–98. doi: 10.1042/bj2140093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyworth C. M., Whetton A. D., Kinsella A. R., Houslay M. D. The phorbol ester, TPA inhibits glucagon-stimulated adenylate cyclase activity. FEBS Lett. 1984 May 7;170(1):38–42. doi: 10.1016/0014-5793(84)81364-2. [DOI] [PubMed] [Google Scholar]
- Houslay M. D. 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 1991 Jan 1;195(1):9–27. doi: 10.1111/j.1432-1033.1991.tb15671.x. [DOI] [PubMed] [Google Scholar]
- Houslay M. D. Insulin, glucagon and the receptor-mediated control of cyclic AMP concentrations in liver. Twenty-second Colworth medal lecture. Biochem Soc Trans. 1986 Apr;14(2):183–193. doi: 10.1042/bst0140183. [DOI] [PubMed] [Google Scholar]
- Houslay M. D. The use of selective inhibitors and computer modelling to evaluate the role of specific high affinity cyclic AMP phosphodiesterases in the hormonal regulation of hepatocyte intracellular cyclic AMP concentrations. Cell Signal. 1990;2(1):85–98. doi: 10.1016/0898-6568(90)90036-a. [DOI] [PubMed] [Google Scholar]
- Huang K. P., Chan K. F., Singh T. J., Nakabayashi H., Huang F. L. Autophosphorylation of rat brain Ca2+-activated and phospholipid-dependent protein kinase. J Biol Chem. 1986 Sep 15;261(26):12134–12140. [PubMed] [Google Scholar]
- Hucho F., Krüger H., Pribilla I., Oberdieck U. A 40 kDa inhibitor of protein kinase C purified from bovine brain. FEBS Lett. 1987 Jan 26;211(2):207–210. doi: 10.1016/0014-5793(87)81437-0. [DOI] [PubMed] [Google Scholar]
- Ishizuka T., Cooper D. R., Farese R. V. Insulin stimulates the translocation of protein kinase C in rat adipocytes. FEBS Lett. 1989 Nov 6;257(2):337–340. doi: 10.1016/0014-5793(89)81565-0. [DOI] [PubMed] [Google Scholar]
- Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
- Kiley S., Schaap D., Parker P., Hsieh L. L., Jaken S. Protein kinase C heterogeneity in GH4C1 rat pituitary cells. Characterization of a Ca2(+)-independent phorbol ester receptor. J Biol Chem. 1990 Sep 15;265(26):15704–15712. [PubMed] [Google Scholar]
- Kilgour E., Anderson N. G., Houslay M. D. Activation and phosphorylation of the 'dense-vesicle' high-affinity cyclic AMP phosphodiesterase by cyclic AMP-dependent protein kinase. Biochem J. 1989 May 15;260(1):27–36. doi: 10.1042/bj2600027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kishimoto A., Takai Y., Mori T., Kikkawa U., Nishizuka Y. Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. J Biol Chem. 1980 Mar 25;255(6):2273–2276. [PubMed] [Google Scholar]
- McDonald J. R., Gröschel-Stewart U., Walsh M. P. Properties and distribution of the protein inhibitor (Mr 17,000) of protein kinase C. Biochem J. 1987 Mar 15;242(3):695–705. doi: 10.1042/bj2420695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mine T., Kojima I., Ogata E. Evidence of cyclic AMP-independent action of glucagon on calcium mobilization in rat hepatocytes. Biochim Biophys Acta. 1988 Jun 30;970(2):166–171. doi: 10.1016/0167-4889(88)90175-9. [DOI] [PubMed] [Google Scholar]
- Mitchell F. E., Marais R. M., Parker P. J. The phosphorylation of protein kinase C as a potential measure of activation. Biochem J. 1989 Jul 1;261(1):131–136. doi: 10.1042/bj2610131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell F. E., Marais R. M., Parker P. J. The phosphorylation of protein kinase C as a potential measure of activation. Biochem J. 1989 Jul 1;261(1):131–136. doi: 10.1042/bj2610131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G. J., Gawler D. J., Milligan G., Wakelam M. J., Pyne N. J., Houslay M. D. Glucagon desensitization of adenylate cyclase and stimulation of inositol phospholipid metabolism does not involve the inhibitory guanine nucleotide regulatory protein Gi, which is inactivated upon challenge of hepatocytes with glucagon. Biochem J. 1989 Apr 1;259(1):191–197. doi: 10.1042/bj2590191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G. J., Hruby V. J., Trivedi D., Wakelam M. J., Houslay M. D. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism. Biochem J. 1987 Apr 1;243(1):39–46. doi: 10.1042/bj2430039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
- Parker P. J., Goris J., Merlevede W. Specificity of protein phosphatases in the dephosphorylation of protein kinase C. Biochem J. 1986 Nov 15;240(1):63–67. doi: 10.1042/bj2400063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson J. D., DeWald D. B., Mathews W. R., Mozier N. M., Zürcher-Neely H. A., Heinrikson R. L., Morris M. A., McCubbin W. D., McDonald J. R., Fraser E. D. Amino acid sequence and characterization of a protein inhibitor of protein kinase C. J Biol Chem. 1990 Mar 15;265(8):4583–4591. [PubMed] [Google Scholar]
- Pershadsingh H. A., Shade D. L., McDonald J. M. Insulin-dependent alterations of phorbol ester binding to adipocyte subcellular constituents. Evidence for the involvement of protein kinase C in insulin action. Biochem Biophys Res Commun. 1987 Jun 30;145(3):1384–1389. doi: 10.1016/0006-291x(87)91591-9. [DOI] [PubMed] [Google Scholar]
- Phillips W. A., Fujiki T., Rossi M. W., Korchak H. M., Johnston R. B., Jr Influence of calcium on the subcellular distribution of protein kinase C in human neutrophils. Extraction conditions determine partitioning of histone-phosphorylating activity and immunoreactivity between cytosol and particulate fractions. J Biol Chem. 1989 May 15;264(14):8361–8365. [PubMed] [Google Scholar]
- Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
- Pribilla I., Krüger H., Buchner K., Otto H., Schiebler W., Tripier D., Hucho F. Heat-resistant inhibitors of protein kinase C from bovine brain. Eur J Biochem. 1988 Nov 15;177(3):657–664. doi: 10.1111/j.1432-1033.1988.tb14420.x. [DOI] [PubMed] [Google Scholar]
- Refsnes M., Johansen E. J., Christoffersen T. Glucagon-induced refractoriness of hepatocyte adenylate cyclase: comparison of homologous and heterologous components and evidence against a role of cAMP. Pharmacol Toxicol. 1989 May;64(5):397–403. doi: 10.1111/j.1600-0773.1989.tb00675.x. [DOI] [PubMed] [Google Scholar]
- Shears S. B. Inositol phosphate metabolism: further problems and some solutions. Cell Signal. 1989;1(2):125–133. doi: 10.1016/0898-6568(89)90001-6. [DOI] [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Kikkawa U., Mori T., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1218–1224. doi: 10.1016/0006-291x(79)91197-5. [DOI] [PubMed] [Google Scholar]
- Vaartjes W. J., de Haas C. G., van den Bergh S. G. Phorbol esters, but not epidermal growth factor or insulin, rapidly decrease soluble protein kinase C activity in rat hepatocytes. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1328–1333. doi: 10.1016/s0006-291x(86)80428-4. [DOI] [PubMed] [Google Scholar]
- Wakelam M. J., Murphy G. J., Hruby V. J., Houslay M. D. Activation of two signal-transduction systems in hepatocytes by glucagon. Nature. 1986 Sep 4;323(6083):68–71. doi: 10.1038/323068a0. [DOI] [PubMed] [Google Scholar]
- Whipps D. E., Armston A. E., Pryor H. J., Halestrap A. P. Effects of glucagon and Ca2+ on the metabolism of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in isolated rat hepatocytes and plasma membranes. Biochem J. 1987 Feb 1;241(3):835–845. doi: 10.1042/bj2410835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young S., Rothbard J., Parker P. J. A monoclonal antibody recognising the site of limited proteolysis of protein kinase C. Inhibition of down-regulation in vivo. Eur J Biochem. 1988 Apr 5;173(1):247–252. doi: 10.1111/j.1432-1033.1988.tb13991.x. [DOI] [PubMed] [Google Scholar]