Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Feb 15;266(1):91–102. doi: 10.1042/bj2660091

Regulation of glycogen synthesis from glucose and gluconeogenic precursors by insulin in periportal and perivenous rat hepatocytes.

L Agius 1, M Peak 1, K G Alberti 1
PMCID: PMC1131100  PMID: 2178605

Abstract

Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.

Full text

PDF
91

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agius L., Chowdhury M. H., Davis S. N., Alberti K. G. Regulation of ketogenesis, gluconeogenesis, and glycogen synthesis by insulin and proinsulin in rat hepatocyte monolayer cultures. Diabetes. 1986 Nov;35(11):1286–1293. doi: 10.2337/diab.35.11.1286. [DOI] [PubMed] [Google Scholar]
  3. Akpan J. O., Gardner R., Wagle S. R. Studies on the effects of insulin and acetylcholine on activation of glycogen synthase and on glycogenesis in hepatocytes. Biochem Biophys Res Commun. 1974 Nov 6;61(1):222–229. doi: 10.1016/0006-291x(74)90556-7. [DOI] [PubMed] [Google Scholar]
  4. Babcock M. B., Cardell R. R., Jr Hepatic glycogen patterns in fasted and fed rats. Am J Anat. 1974 Jul;140(3):299–337. doi: 10.1002/aja.1001400302. [DOI] [PubMed] [Google Scholar]
  5. Bartels H., Vogt B., Jungermann K. Glycogen synthesis from pyruvate in the periportal and from glucose in the perivenous zone in perfused livers from fasted rats. FEBS Lett. 1987 Sep 14;221(2):277–283. doi: 10.1016/0014-5793(87)80940-7. [DOI] [PubMed] [Google Scholar]
  6. Bartels H., Vogt B., Jungermann K. Glycogen synthesis via the indirect gluconeogenic pathway in the periportal and via the direct glucose utilizing pathway in the perivenous zone of perfused rat liver. Histochemistry. 1988;89(3):253–260. doi: 10.1007/BF00493149. [DOI] [PubMed] [Google Scholar]
  7. Berry M. N., Kun E., Werner H. V. Regulatory role of reducing-equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur J Biochem. 1973 Mar 15;33(3):407–417. doi: 10.1111/j.1432-1033.1973.tb02697.x. [DOI] [PubMed] [Google Scholar]
  8. Beynen A. C., Geelen M. J. Control of glycogen synthesis in isolated rat hepatocytes by insulin, glucagon & acetylcholine. Indian J Exp Biol. 1981 Jan;19(1):46–48. [PubMed] [Google Scholar]
  9. Boyd M. E., Albright E. B., Foster D. W., McGarry J. D. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. J Clin Invest. 1981 Jul;68(1):142–152. doi: 10.1172/JCI110230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cardell R. R., Jr Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol. 1977;48:221–279. doi: 10.1016/s0074-7696(08)61746-5. [DOI] [PubMed] [Google Scholar]
  11. Carmona A., Freedland R. A. Effect of glycerol and dihydroxyacetone on hepatic lipogenesis. Arch Biochem Biophys. 1989 May 15;271(1):130–138. doi: 10.1016/0003-9861(89)90263-4. [DOI] [PubMed] [Google Scholar]
  12. Chen K. S., Katz J. Zonation of glycogen and glucose syntheses, but not glycolysis, in rat liver. Biochem J. 1988 Oct 1;255(1):99–104. doi: 10.1042/bj2550099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen K. S., Lardy H. A. Multiple requirements for glycogen synthesis by hepatocytes isolated from fasted rats. J Biol Chem. 1985 Nov 25;260(27):14683–14688. [PubMed] [Google Scholar]
  14. Chowdhury M. H., Agius L. Epidermal growth factor counteracts the glycogenic effect of insulin in parenchymal hepatocyte cultures. Biochem J. 1987 Oct 15;247(2):307–314. doi: 10.1042/bj2470307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ciudad C. J., Massagué J., Guinovart J. J. The inactivation of glycogen phosphorylase is not a prerequisite for the activation of liver glycogen synthase. FEBS Lett. 1979 Mar 15;99(2):321–324. doi: 10.1016/0014-5793(79)80982-5. [DOI] [PubMed] [Google Scholar]
  16. Clifton P. M., Chang L., Mackinnon A. M. Development of an automated Lowry protein assay for the Cobas-Bio centrifugal analyzer. Anal Biochem. 1988 Jul;172(1):165–168. doi: 10.1016/0003-2697(88)90426-5. [DOI] [PubMed] [Google Scholar]
  17. Fleig W. E., Enderle D., Steudter S., Nöther-Fleig G., Ditschuneit H. Regulation of basal and insulin-stimulated glycogen synthesis in cultured hepatocytes. Inverse relationship to glycogen content. J Biol Chem. 1987 Jan 25;262(3):1155–1160. [PubMed] [Google Scholar]
  18. Geelen M. J. Restoration of glycogenesis in hepatocytes from starved rats. Life Sci. 1977 Mar 15;20(6):1027–1034. doi: 10.1016/0024-3205(77)90290-9. [DOI] [PubMed] [Google Scholar]
  19. Gergely P., Tóth B., Farkas I., Bot G. Effect of fructose 1-phosphate on the activation of liver glycogen synthase. Biochem J. 1985 Nov 15;232(1):133–137. doi: 10.1042/bj2320133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gerondaes P., Alberti K. G., Agius L. Fatty acid metabolism in hepatocytes cultured with hypolipidaemic drugs. Role of carnitine. Biochem J. 1988 Jul 1;253(1):161–167. doi: 10.1042/bj2530161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Golden S., Wals P. A., Okajima F., Katz J. Glycogen synthesis by hepatocytes from diabetic rats. Biochem J. 1979 Sep 15;182(3):727–734. doi: 10.1042/bj1820727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hems D. A., Whitton P. D., Taylor E. A. Glycogen synthesis in the perfused liver of the starved rat. Biochem J. 1972 Sep;129(3):529–538. doi: 10.1042/bj1290529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holness M. J., MacLennan P. A., Palmer T. N., Sugden M. C. The disposition of carbohydrate between glycogenesis, lipogenesis and oxidation in liver during the starved-to-fed transition. Biochem J. 1988 Jun 1;252(2):325–330. doi: 10.1042/bj2520325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Huang M. T., Veech R. L. Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial state. J Clin Invest. 1988 Mar;81(3):872–878. doi: 10.1172/JCI113397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Jungermann K. Metabolic zonation of liver parenchyma: significance for the regulation of glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes Metab Rev. 1987 Jan;3(1):269–293. doi: 10.1002/dmr.5610030112. [DOI] [PubMed] [Google Scholar]
  26. Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Landau B. R., Wahren J. Quantification of the pathways followed in hepatic glycogen formation from glucose. FASEB J. 1988 May;2(8):2368–2375. doi: 10.1096/fasebj.2.8.3282961. [DOI] [PubMed] [Google Scholar]
  29. Lang C. H., Bagby G. J., Blakesley H. L., Johnson J. L., Spitzer J. J. Plasma glucose concentration determines direct versus indirect liver glycogen synthesis. Am J Physiol. 1986 Nov;251(5 Pt 1):E584–E590. doi: 10.1152/ajpendo.1986.251.5.E584. [DOI] [PubMed] [Google Scholar]
  30. Lindros K. O., Penttilä K. E. Digitonin-collagenase perfusion for efficient separation of periportal or perivenous hepatocytes. Biochem J. 1985 Jun 15;228(3):757–760. doi: 10.1042/bj2280757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McGarry J. D., Kuwajima M., Newgard C. B., Foster D. W., Katz J. From dietary glucose to liver glycogen: the full circle round. Annu Rev Nutr. 1987;7:51–73. doi: 10.1146/annurev.nu.07.070187.000411. [DOI] [PubMed] [Google Scholar]
  32. Nyfeler F., Fasel P., Walter P. Short-term stimulation of net glycogen production by insulin in rat hepatocytes. Biochim Biophys Acta. 1981 Jun 11;675(1):17–23. doi: 10.1016/0304-4165(81)90064-7. [DOI] [PubMed] [Google Scholar]
  33. Okajima F., Katz J. Effect of mercaptopicolinic acid and of transaminase inhibitors on glycogen synthesis by rat hepatocytes. Biochem Biophys Res Commun. 1979 Mar 15;87(1):155–162. doi: 10.1016/0006-291x(79)91660-7. [DOI] [PubMed] [Google Scholar]
  34. Pallardo F. V., Williamson D. H. Comparison of the flux of carbon to hepatic glycogen deposition and fatty acid and cholesterol synthesis on refeeding rats fed ad libitum or meal-fed rats with a chow-diet meal. Biochem J. 1989 Jan 15;257(2):607–610. doi: 10.1042/bj2570607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Postle A. D., Bloxham D. P. The use of tritiated water to measure absolute rates of hepatic glycogen synthesis. Biochem J. 1980 Oct 15;192(1):65–73. doi: 10.1042/bj1920065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Quistorff B., Dich J., Grunnet N. Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1055–1061. doi: 10.1016/s0006-291x(86)80284-4. [DOI] [PubMed] [Google Scholar]
  37. Quistorff B. Gluconeogenesis in periportal and perivenous hepatocytes of rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J. 1985 Jul 1;229(1):221–226. doi: 10.1042/bj2290221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richards W. L., Potter V. R. Scanning microdensitometry of glycogen zonation in the livers of rats adapted to a controlled feeding schedule and to 30, 60, or 90% casein diets. Am J Anat. 1980 Jan;157(1):71–85. doi: 10.1002/aja.1001570108. [DOI] [PubMed] [Google Scholar]
  39. Sasse D. Dynamics of liver glycogen: the topochemistry of glycogen synthesis, glycogen content and glycogenolysis under the experimental conditions of glycogen accumulation and depletion. Histochemistry. 1975 Dec 8;45(3):237–254. doi: 10.1007/BF00507698. [DOI] [PubMed] [Google Scholar]
  40. Schudt C. Influence of insulin, glucocorticoids and glucose on glycogen synthase activity in hepatocyte cultures. Biochim Biophys Acta. 1980 May 22;629(3):499–509. doi: 10.1016/0304-4165(80)90155-5. [DOI] [PubMed] [Google Scholar]
  41. Schudt C. Regulation of glycogen synthesis in rat-hepatocyte cultures by glucose, insulin and glucocorticoids. Eur J Biochem. 1979 Jun;97(1):155–160. doi: 10.1111/j.1432-1033.1979.tb13097.x. [DOI] [PubMed] [Google Scholar]
  42. Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
  43. Seglen Per O. Glycogen synthesis in isolated parenchymal rat liver cells. FEBS Lett. 1973 Feb 15;30(1):25–28. doi: 10.1016/0014-5793(73)80611-8. [DOI] [PubMed] [Google Scholar]
  44. Spence J. T., Koudelka A. P. Pathway of glycogen synthesis from glucose in hepatocytes maintained in primary culture. J Biol Chem. 1985 Feb 10;260(3):1521–1526. [PubMed] [Google Scholar]
  45. Thompson E. W., Parks W. C., Drake R. L. Rapid alterations induced by insulin in hepatocyte ultrastructure and glycogen levels. Am J Anat. 1981 Apr;160(4):449–460. doi: 10.1002/aja.1001600408. [DOI] [PubMed] [Google Scholar]
  46. Tosh D., Alberti G. M., Agius L. Glucagon regulation of gluconeogenesis and ketogenesis in periportal and perivenous rat hepatocytes. Heterogeneity of hormone action and of the mitochondrial redox state. Biochem J. 1988 Nov 15;256(1):197–204. doi: 10.1042/bj2560197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Van Schaftingen E., Vandercammen A. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes. Eur J Biochem. 1989 Jan 15;179(1):173–177. doi: 10.1111/j.1432-1033.1989.tb14537.x. [DOI] [PubMed] [Google Scholar]
  48. Woods H. F., Krebs H. A. The effect of glycerol and dihydroxyacetone on hepatic adenine nucleotides. Biochem J. 1973 Jan;132(1):55–60. doi: 10.1042/bj1320055. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES