Abstract
Incubation of human erythrocytes in medium containing inosine (10 mM), pyruvate (10 mM), phosphate (50 mM) and NaCl (75 mM) at pH 6.6 leads to a more than 1000-fold increase in the concentration of 5-phosphoribosyl 1-pyrophosphate (PRPP), as identified and quantified by 31P-n.m.r. spectroscopy. The accumulation is highly pH-dependent, with a maximum at extracellular pH 6.60, and the maximum value of 1.3-1.6 mmol/l of erythrocytes is attained within 1 h at 37 degrees C. PRPP was accumulated despite high concentrations of 2,3-bisphosphoglycerate (2,3-BPG), an inhibitor of PRPP synthetase. The concentration of PRPP correlated with the intracellular concentration of inorganic phosphate (Pi). Substitution of either adenosine or adenosine plus inosine for inosine in the medium did not lead to 31P-n.m.r.-detectable accumulation of PRPP. These results show that neither 2,3-BPG nor PRPP itself inhibits the synthesis of PRPP in the human erythrocyte. Adenosine, however, prevents the inosine-stimulated accumulation of PRPP.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartlett G. R., Bucolo G. The metabolism of ribonucleoside by the human erythrocyte. Biochim Biophys Acta. 1968 Mar 11;156(2):240–253. doi: 10.1016/0304-4165(68)90253-5. [DOI] [PubMed] [Google Scholar]
- Becker M. A., Raivio K. O., Seegmiller J. E. Synthesis of phosphoribosylpyrophosphate in mammalian cells. Adv Enzymol Relat Areas Mol Biol. 1979;49:281–306. doi: 10.1002/9780470122945.ch7. [DOI] [PubMed] [Google Scholar]
- Deuticke B., Duhm J., Dierkesmann R. Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: influence on glycolytic metabolism and intracellular pH. Pflugers Arch. 1971;326(1):15–34. doi: 10.1007/BF00586792. [DOI] [PubMed] [Google Scholar]
- Duhm J., Deuticke B., Gerlach E. Complete restoration of oxygen transport function and 2,3-diphosphoglycerate concentration in stored blood. Transfusion. 1971 May-Jun;11(3):147–151. doi: 10.1111/j.1537-2995.1971.tb04393.x. [DOI] [PubMed] [Google Scholar]
- Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes. Pflugers Arch. 1971;326(4):341–356. doi: 10.1007/BF00586998. [DOI] [PubMed] [Google Scholar]
- Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Distribution, purification, and properties. J Biol Chem. 1971 Sep 25;246(18):5739–5748. [PubMed] [Google Scholar]
- Fox I. H., Kelley W. N. Human phosphoribosylpyrophosphate synthetase. Kinetic mechanism and end product inhibition. J Biol Chem. 1972 Apr 10;247(7):2126–2131. [PubMed] [Google Scholar]
- Giacomello A., Salerno C. Hypoxanthine uptake by human erythrocytes. FEBS Lett. 1979 Nov 1;107(1):203–204. doi: 10.1016/0014-5793(79)80495-0. [DOI] [PubMed] [Google Scholar]
- Henderson J. F., Zombor G., Fraser J. H., McCoy E. E., Verhoef V., Morris A. J. Factors affecting inosinate synthesis and inosine triphosphate accumulation in human erythrocytes. Can J Biochem. 1977 Apr;55(4):359–364. doi: 10.1139/o77-049. [DOI] [PubMed] [Google Scholar]
- Hershko A., Razin A., Mager J. Regulation of the synthesis of 5-phosphoribosyl-I-pyrophosphate in intact red blood cells and in cell-free preparations. Biochim Biophys Acta. 1969 Jun 17;184(1):64–76. doi: 10.1016/0304-4165(69)90099-3. [DOI] [PubMed] [Google Scholar]
- Labotka R. J., Omachi A. The pH dependence of red cell membrane transport of titratable anions studied by NMR spectroscopy. J Biol Chem. 1988 Jan 25;263(3):1166–1173. [PubMed] [Google Scholar]
- Lerner M. H., Rubinstein D. The role of adenine and adenosine as precursors for adenine nucleotide synthesis by fresh and preserved human erythrocytes. Biochim Biophys Acta. 1970 Dec 14;224(2):301–310. doi: 10.1016/0005-2787(70)90563-0. [DOI] [PubMed] [Google Scholar]
- McIntyre L. M., Thorburn D. R., Bubb W. A., Kuchel P. W. Comparison of computer simulations of the F-type and L-type non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes. Eur J Biochem. 1989 Mar 15;180(2):399–420. doi: 10.1111/j.1432-1033.1989.tb14662.x. [DOI] [PubMed] [Google Scholar]
- Oski F. A., Travis S. F., Miller L. D., Delivoria-Papadopoulos M., Cannon E. The in vitro restoration of red cell 2,3-diphosphoglycerate levels in banked blood. Blood. 1971 Jan;37(1):52–58. [PubMed] [Google Scholar]
- Petersen A., Jacobsen J. P., Hørder M. 31P NMR measurements of intracellular pH in erythrocytes: direct comparison with measurements using freeze-thaw and investigation into the influence of ionic strength and Mg2+. Magn Reson Med. 1987 Apr;4(4):341–350. doi: 10.1002/mrm.1910040405. [DOI] [PubMed] [Google Scholar]
- Petersen A., Pedersen E. J., Quistorff B. The Na+/K+-ATPase reaction of human erythrocytes is not near equilibrium. A 31P-NMR study. Biochim Biophys Acta. 1989 Aug 15;1012(3):267–271. doi: 10.1016/0167-4889(89)90107-9. [DOI] [PubMed] [Google Scholar]
- Planet G., Fox I. H. Inhibition of phosphoribosylpyrophosphate synthesis by purine nucleosides in human erythrocytes. J Biol Chem. 1976 Oct 10;251(19):5839–5844. [PubMed] [Google Scholar]
- Rylance H. J., Wallace R. C., Nuki G. A method for the determination of 5-phosphoribosyl 1-pyrophosphate concentrations in erythrocytes using high-performance liquid chromatography. Anal Biochem. 1987 Feb 1;160(2):337–341. doi: 10.1016/0003-2697(87)90056-x. [DOI] [PubMed] [Google Scholar]
- Salerno C., Giacomello A. Hypoxanthine-guanine exchange by intact human erythrocytes. Biochemistry. 1985 Mar 12;24(6):1306–1309. doi: 10.1021/bi00327a006. [DOI] [PubMed] [Google Scholar]
- Sperling O., Eilam G., Persky-Brosh S., De Vries A. Simpler method for the determination of 5-phosphoribosyl-1-pyrophosphate in red blood cells. J Lab Clin Med. 1972 Jun;79(6):1021–1026. [PubMed] [Google Scholar]
- Tax W. J., Veerkamp J. H. A simple and sensitive method for estimating the concentration and synthesis of 5-phosphoribosyl 1-pyrophosphate in red blood cells. Clin Chim Acta. 1977 Jul 15;78(2):209–216. doi: 10.1016/0009-8981(77)90308-4. [DOI] [PubMed] [Google Scholar]
- Tomoda A., Yagawa K., Yoneyama Y. Accumulation of inosine 5'-monophosphate in human erythrocytes incubated with inosine. Biomed Biochim Acta. 1987;46(2-3):S280–S284. [PubMed] [Google Scholar]
- Valeri C. R., Zaroulis C. G. Rejuvenation and freezing of outdated stored human red cells. N Engl J Med. 1972 Dec 28;287(26):1307–1313. doi: 10.1056/NEJM197212282872601. [DOI] [PubMed] [Google Scholar]
- Zachara B. In vitro synthesis of inosinetriphosphate in human erythrocytes. J Biochem. 1974 Oct;76(4):891–895. [PubMed] [Google Scholar]
- Zachara B., Lewandowski J. Isolation and identification of inosine triphosphate from human erythrocytes. Biochim Biophys Acta. 1974 Jun 27;353(2):253–259. doi: 10.1016/0005-2787(74)90190-7. [DOI] [PubMed] [Google Scholar]
- Zachara B. Synthesis of ITP and ATP and regeneration of 2,3-DPG in human erythrocytes incubated with adenosine, pyruvate and inorganic phosphate. Transfusion. 1977 Nov-Dec;17(6):628–634. doi: 10.1046/j.1537-2995.1977.17678075663.x. [DOI] [PubMed] [Google Scholar]