Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Mar 15;266(3):727–736. doi: 10.1042/bj2660727

Effects of catecholamines on protein synthesis in cardiac myocytes and perfused hearts isolated from adult rats. Stimulation of translation is mediated through the alpha 1-adrenoceptor.

S J Fuller 1, C J Gaitanaki 1, P H Sugden 1
PMCID: PMC1131200  PMID: 1970237

Abstract

Protein-synthesis rates in freshly isolated cardiac myocytes from adult rats were acutely stimulated by 20-30% by 1 microM-adrenaline, by 1 microM-noradrenaline or by 1 microM-phenylephrine, but were not stimulated by 1 microM-isoprenaline. Stimulation by 1 microM-adrenaline was completely prevented by 100 nM-prazosin. Yohimbine was much less effective in preventing stimulation, and 20 microM-DL-propranolol was completely ineffective. The stimulation of protein synthesis by adrenaline was still observed after inhibition of transcription by actinomycin D. None of these manipulations affected myocyte ATP contents. In anterogradely perfused hearts, protein-synthesis rates were stimulated by 1-2 microM-adrenaline in the presence of 10 microM-DL-propranolol (to decrease the beta-adrenergic effects of adrenaline). ATP contents were not altered, but phosphocreatine contents were increased. These observations lead us to conclude that cardiac protein synthesis can be stimulated acutely at the level of translation by alpha 1-adrenergic stimulation. We discuss possible roles for protein kinase C and intracellular alkalinization in the mediation of this effect.

Full text

PDF
727

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Airhart J., Arnold J. A., Stirewalt W. S., Low R. B. Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol. 1982 Jul;243(1):C81–C86. doi: 10.1152/ajpcell.1982.243.1.C81. [DOI] [PubMed] [Google Scholar]
  2. Allen I. S., Cohen N. M., Dhallan R. S., Gaa S. T., Lederer W. J., Rogers T. B. Angiotensin II increases spontaneous contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms. Circ Res. 1988 Mar;62(3):524–534. doi: 10.1161/01.res.62.3.524. [DOI] [PubMed] [Google Scholar]
  3. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  4. Bittl J. A., Ingwall J. S. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem. 1985 Mar 25;260(6):3512–3517. [PubMed] [Google Scholar]
  5. Brown J. H., Buxton I. L., Brunton L. L. Alpha 1-adrenergic and muscarinic cholinergic stimulation of phosphoinositide hydrolysis in adult rat cardiomyocytes. Circ Res. 1985 Oct;57(4):532–537. doi: 10.1161/01.res.57.4.532. [DOI] [PubMed] [Google Scholar]
  6. Buxton I. L., Brunton L. L. Alpha-adrenergic receptors on rat ventricular myocytes: characteristics and linkage to cAMP metabolism. Am J Physiol. 1986 Aug;251(2 Pt 2):H307–H313. doi: 10.1152/ajpheart.1986.251.2.H307. [DOI] [PubMed] [Google Scholar]
  7. Castagna M. Phorbol esters as signal transducers and tumor promoters. Biol Cell. 1987;59(1):3–13. doi: 10.1111/j.1768-322x.1987.tb00513.x. [DOI] [PubMed] [Google Scholar]
  8. Clark W. A., Jr, Zak R. Assessment of fractional rates of protein synthesis in cardiac muscle cultures after equilibrium labeling. J Biol Chem. 1981 May 25;256(10):4863–4870. [PubMed] [Google Scholar]
  9. Frelin C. The regulation of protein turnover in newborn rat heart cell cultures. J Biol Chem. 1980 Dec 10;255(23):11149–11155. [PubMed] [Google Scholar]
  10. Frelin C., Vigne P., Ladoux A., Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur J Biochem. 1988 May 16;174(1):3–14. doi: 10.1111/j.1432-1033.1988.tb14055.x. [DOI] [PubMed] [Google Scholar]
  11. Fuller S. J., Gaitanaki C. J., Sugden P. H. Effects of increasing extracellular pH on protein synthesis and protein degradation in the perfused working rat heart. Biochem J. 1989 Apr 1;259(1):173–179. doi: 10.1042/bj2590173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fuller S. J., Sugden P. H. Acute inhibition of rat heart protein synthesis in vitro during beta-adrenergic stimulation or hypoxia. Am J Physiol. 1988 Oct;255(4 Pt 1):E537–E547. doi: 10.1152/ajpendo.1988.255.4.E537. [DOI] [PubMed] [Google Scholar]
  13. Fuller S. J., Sugden P. H. Protein synthesis in rat cardiac myocytes is stimulated at the level of translation by phorbol esters. FEBS Lett. 1989 Apr 24;247(2):209–212. doi: 10.1016/0014-5793(89)81336-5. [DOI] [PubMed] [Google Scholar]
  14. Fuller S. J., Sugden P. H. Stimulation of protein synthesis, glucose uptake and lactate output by insulin and adenosine deaminase in the rat heart. FEBS Lett. 1986 Jun 9;201(2):246–250. doi: 10.1016/0014-5793(86)80617-2. [DOI] [PubMed] [Google Scholar]
  15. Green R. D., Frelin C., Vigne P., Lazdunski M. The activity of the Na+/H+ antiporter in cultured cardiac cells is dependent on the culture conditions used. FEBS Lett. 1986 Feb 3;196(1):163–166. doi: 10.1016/0014-5793(86)80234-4. [DOI] [PubMed] [Google Scholar]
  16. Grinstein S., Cohen S., Goetz J. D., Rothstein A., Gelfand E. W. Characterization of the activation of Na+/H+ exchange in lymphocytes by phorbol esters: change in cytoplasmic pH dependence of the antiport. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1429–1433. doi: 10.1073/pnas.82.5.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hait G., Kypson J., Massih R. Amino acid incorporation into myocardium: effect of insulin, glucagon, and dibutyryl 3',5'-AMP. Am J Physiol. 1972 Feb;222(2):404–408. doi: 10.1152/ajplegacy.1972.222.2.404. [DOI] [PubMed] [Google Scholar]
  18. Hesketh J. E., Campbell G. P., Reeds P. J. Rapid response of protein synthesis to insulin in 3T3 cells: effects of protein kinase C depletion and differences from the response to serum repletion. Biosci Rep. 1986 Sep;6(9):797–804. doi: 10.1007/BF01117102. [DOI] [PubMed] [Google Scholar]
  19. Källfelt B. J., Hjalmarson A. C., Isaksson O. G. In vitro effects of catecholamines on protein synthesis in perfused rat heart. J Mol Cell Cardiol. 1976 Oct;8(10):787–802. doi: 10.1016/0022-2828(76)90085-7. [DOI] [PubMed] [Google Scholar]
  20. Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  21. Lee H. R., Henderson S. A., Reynolds R., Dunnmon P., Yuan D., Chien K. R. Alpha 1-adrenergic stimulation of cardiac gene transcription in neonatal rat myocardial cells. Effects on myosin light chain-2 gene expression. J Biol Chem. 1988 May 25;263(15):7352–7358. [PubMed] [Google Scholar]
  22. Mallov S. Effect of sympathomimetic drugs on protein synthesis in rat heart. J Pharmacol Exp Ther. 1973 Dec;187(3):482–494. [PubMed] [Google Scholar]
  23. McDermott P. J., Morgan H. E. Contraction modulates the capacity for protein synthesis during growth of neonatal heart cells in culture. Circ Res. 1989 Mar;64(3):542–553. doi: 10.1161/01.res.64.3.542. [DOI] [PubMed] [Google Scholar]
  24. McKee E. E., Cheung J. Y., Rannels D. E., Morgan H. E. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978 Feb 25;253(4):1030–1040. [PubMed] [Google Scholar]
  25. Meidell R. S., Sen A., Henderson S. A., Slahetka M. F., Chien K. R. Alpha 1-adrenergic stimulation of rat myocardial cells increases protein synthesis. Am J Physiol. 1986 Nov;251(5 Pt 2):H1076–H1084. doi: 10.1152/ajpheart.1986.251.5.H1076. [DOI] [PubMed] [Google Scholar]
  26. Morgan H. E., Gordon E. E., Kira Y., Chua H. L., Russo L. A., Peterson C. J., McDermott P. J., Watson P. A. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol. 1987;49:533–543. doi: 10.1146/annurev.ph.49.030187.002533. [DOI] [PubMed] [Google Scholar]
  27. Muntz K. H., Garcia C., Hagler H. K. alpha 1-Receptor localization in rat heart and kidney using autoradiography. Am J Physiol. 1985 Sep;249(3 Pt 2):H512–H519. doi: 10.1152/ajpheart.1985.249.3.H512. [DOI] [PubMed] [Google Scholar]
  28. Nagai R., Low R. B., Stirewalt W. S., Alpert N. R., Litten R. Z. Efficiency and capacity of protein synthesis are increased in pressure overload cardiac hypertrophy. Am J Physiol. 1988 Aug;255(2 Pt 2):H325–H328. doi: 10.1152/ajpheart.1988.255.2.H325. [DOI] [PubMed] [Google Scholar]
  29. Preedy V. R., Smith D. M., Kearney N. F., Sugden P. H. Rates of protein turnover in vivo and in vitro in ventricular muscle of hearts from fed and starved rats. Biochem J. 1984 Sep 1;222(2):395–400. doi: 10.1042/bj2220395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rogers T. B., Gaa S. T., Allen I. S. Identification and characterization of functional angiotensin II receptors on cultured heart myocytes. J Pharmacol Exp Ther. 1986 Feb;236(2):438–444. [PubMed] [Google Scholar]
  31. Simpson P. C. Role of proto-oncogenes in myocardial hypertrophy. Am J Cardiol. 1988 Oct 5;62(11):13G–19G. doi: 10.1016/0002-9149(88)90026-4. [DOI] [PubMed] [Google Scholar]
  32. Simpson P., Bishopric N., Coughlin S., Karliner J., Ordahl C., Starksen N., Tsao T., White N., Williams L. Dual trophic effects of the alpha 1-adrenergic receptor in cultured neonatal rat heart muscle cells. J Mol Cell Cardiol. 1986 Nov;18 (Suppl 5):45–58. doi: 10.1016/s0022-2828(86)80460-6. [DOI] [PubMed] [Google Scholar]
  33. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
  34. Skomedal T., Aass H., Osnes J. B. Specific binding of [3H]prazosin to myocardial cells isolated from adult rats. Biochem Pharmacol. 1984 Jun 15;33(12):1897–1906. doi: 10.1016/0006-2952(84)90545-8. [DOI] [PubMed] [Google Scholar]
  35. Smith D. M., Fuller S. J., Sugden P. H. The effects of lactate, acetate, glucose, insulin, starvation and alloxan-diabetes on protein synthesis in perfused rat hearts. Biochem J. 1986 Jun 1;236(2):543–547. doi: 10.1042/bj2360543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith D. M., Sugden P. H. Effects of pressure overload and insulin on protein turnover in the perfused rat heart. Prostaglandins are not involved although their synthesis is stimulated by insulin. Biochem J. 1987 Apr 15;243(2):473–479. doi: 10.1042/bj2430473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  38. Starksen N. F., Simpson P. C., Bishopric N., Coughlin S. R., Lee W. M., Escobedo J. A., Williams L. T. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8348–8350. doi: 10.1073/pnas.83.21.8348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sugden P. H., Smith D. M. The effects of glucose, acetate, lactate and insulin on protein degradation in the perfused rat heart. Biochem J. 1982 Sep 15;206(3):467–472. doi: 10.1042/bj2060467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sugden P. H., Smith D. M. The effects of insulin on glucose uptake and lactate release in perfused working rat heart preparations. Biochem J. 1982 Sep 15;206(3):473–479. doi: 10.1042/bj2060473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tarazi R. C., Sen S., Saragoca M., Khairallah P. The multifactorial role of catecholamines in hypertensive cardiac hypertrophy. Eur Heart J. 1982 Apr;3 (Suppl A):103–110. doi: 10.1093/eurheartj/3.suppl_a.103. [DOI] [PubMed] [Google Scholar]
  43. Thomas R. C. Cell growth factors. Bicarbonate and pHi response. Nature. 1989 Feb 16;337(6208):601–601. doi: 10.1038/337601a0. [DOI] [PubMed] [Google Scholar]
  44. Watson P. A., Haneda T., Morgan H. E. Effect of higher aortic pressure on ribosome formation and cAMP content in rat heart. Am J Physiol. 1989 Jun;256(6 Pt 1):C1257–C1261. doi: 10.1152/ajpcell.1989.256.6.C1257. [DOI] [PubMed] [Google Scholar]
  45. Williams I. H., Chua B. H., Sahms R. H., Siehl D., Morgan H. E. Effects of diabetes on protein turnover in cardiac muscle. Am J Physiol. 1980 Sep;239(3):E178–E185. doi: 10.1152/ajpendo.1980.239.3.E178. [DOI] [PubMed] [Google Scholar]
  46. Xenophontos X. P., Gordon E. E., Morgan H. E. Effect of intraventricular pressure on protein synthesis in arrested rat hearts. Am J Physiol. 1986 Jul;251(1 Pt 1):C95–C98. doi: 10.1152/ajpcell.1986.251.1.C95. [DOI] [PubMed] [Google Scholar]
  47. Xenophontos X. P., Watson P. A., Chua B. H., Haneda T., Morgan H. E. Increased cyclic AMP content accelerates protein synthesis in rat heart. Circ Res. 1989 Sep;65(3):647–656. doi: 10.1161/01.res.65.3.647. [DOI] [PubMed] [Google Scholar]
  48. Zak R., Martin A. F., Blough R. Assessment of protein turnover by use of radioisotopic tracers. Physiol Rev. 1979 Apr;59(2):407–447. doi: 10.1152/physrev.1979.59.2.407. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES