Abstract
The effects of potential serum inhibitors upon the growth of calcium hydroxyapatite (HAP) crystals were studied in vivo using a pH-stat system. Whole serum caused a marked decrease in crystal growth in a dose-dependent manner. At a protein concentration of 13 micrograms/ml, whole serum reduced the initial rate of crystal growth from 84 mumol of KOH/h to 48 mumol of KOH/h. Serum components were separated by ultrafiltration (10,000 Da cut-off). The high-molecular-mass fraction containing serum proteins gave an initial rate of crystal growth of 48 mumol of KOH/h compared with 64 mumol of KOH/h given by the low-molecular-mass components. Thus, two-thirds of the inhibitory activity was associated with proteins and other serum macromolecules, whilst the remainder of the activity was associated with the low-molecular-mass components. Albumin-depleted serum showed an initial rate of crystal growth of 59 mumol of KOH/h, whilst albumin purified by affinity chromatography gave an initial rate of crystal growth of 56 mumol of KOH/h at the same protein concentration. Albumin, therefore, not only accounts for half of the protein concentration in serum, but also contributes half of the inhibitory activity of the high-molecular-mass fraction. Heat denaturation of albumin dramatically enhanced the inhibition of HAP seeded growth with the initial rate of crystal growth falling to 27 mumol of KOH/h after treatment compared with 62 mumol of KOH/h before denaturation. Isoelectric focusing indicated that the tertiary and secondary structure, and hence the distribution of surface charge of albumin, are altered by heat denaturation. Gels showed a mixture of species with isoelectric points ranging from 6.0 to 5.0 compared with the native protein value of 4.7. These data suggest that adsorption of serum proteins to the growing HAP crystals is one mechanism of growth inhibition. It is also clear that the most abundant serum protein, albumin, is an important mediator of this process.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addadi L., Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4110–4114. doi: 10.1073/pnas.82.12.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson H. C. Calcific diseases. A concept. Arch Pathol Lab Med. 1983 Jul;107(7):341–348. [PubMed] [Google Scholar]
- Aoba T., Moreno E. C., Hay D. I. Inhibition of apatite crystal growth by the amino-terminal segment of human salivary acidic proline-rich proteins. Calcif Tissue Int. 1984 Dec;36(6):651–658. doi: 10.1007/BF02405385. [DOI] [PubMed] [Google Scholar]
- Bloomfield V. The structure of bovine serum albumin at low pH. Biochemistry. 1966 Feb;5(2):684–689. doi: 10.1021/bi00866a039. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Boyan-Salyers B. D., Burstein L. S., Mandel I. D. Lipids associated with mineralization of human submandibular gland sialoliths. Arch Oral Biol. 1981;26(10):779–785. doi: 10.1016/0003-9969(81)90173-4. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Bullough P. G., Posner A. S. Calcium-acidic phospholipid-phosphate complexes in diseased and normal human bone. Metab Bone Dis Relat Res. 1982;4(2):151–156. doi: 10.1016/0221-8747(82)90029-7. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Burstein L. S., Mandel I. D. Phospholipids associated with human parotid gland sialoliths. Arch Oral Biol. 1983;28(7):655–657. doi: 10.1016/0003-9969(83)90015-8. [DOI] [PubMed] [Google Scholar]
- Boskey A. L., Posner A. S. The role of synthetic and bone extracted Ca-phospholipid-PO4 complexes in hydroxyapatite formation. Calcif Tissue Res. 1977 Oct 20;23(3):251–258. doi: 10.1007/BF02012794. [DOI] [PubMed] [Google Scholar]
- Chen C. C., Boskey A. L. The effects of proteoglycans from different cartilage types on in vitro hydroxyapatite proliferation. Calcif Tissue Int. 1986 Nov;39(5):324–327. doi: 10.1007/BF02555199. [DOI] [PubMed] [Google Scholar]
- De Caro A., Multigner L., Lafont H., Lombardo D., Sarles H. The molecular characteristics of a human pancreatic acidic phosphoprotein that inhibits calcium carbonate crystal growth. Biochem J. 1984 Sep 15;222(3):669–677. doi: 10.1042/bj2220669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieppe P., Campion G., Doherty M. Mixed crystal deposition. Rheum Dis Clin North Am. 1988 Aug;14(2):415–426. [PubMed] [Google Scholar]
- Eidelman N., Chow L. C., Brown W. E. Calcium phosphate saturation levels in ultrafiltered serum. Calcif Tissue Int. 1987 Feb;40(2):71–78. doi: 10.1007/BF02555708. [DOI] [PubMed] [Google Scholar]
- Fisher L. W., Termine J. D. Noncollagenous proteins influencing the local mechanisms of calcification. Clin Orthop Relat Res. 1985 Nov;(200):362–385. [PubMed] [Google Scholar]
- Fujisawa R., Kuboki Y., Sasaki S. Changes in interaction of bovine dentin phosphophoryn with calcium and hydroxyapatite by chemical modifications. Calcif Tissue Int. 1986 Oct;39(4):248–251. doi: 10.1007/BF02555213. [DOI] [PubMed] [Google Scholar]
- Fujisawa R., Kuboki Y., Sasaki S. Effects of dentin phosphophoryn on precipitation of calcium phosphate in gel in vitro. Calcif Tissue Int. 1987 Jul;41(1):44–47. doi: 10.1007/BF02555130. [DOI] [PubMed] [Google Scholar]
- Hunter G. K., Allen B. L., Grynpas M. D., Cheng P. T. Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate. Biochem J. 1985 Jun 1;228(2):463–469. doi: 10.1042/bj2280463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol Rev. 1981 Mar;33(1):17–53. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Meyer J. L., Fleisch H. Calcification inhibitors in rat and human serum and plasma. Biochim Biophys Acta. 1984 Jun 15;799(2):115–121. doi: 10.1016/0304-4165(84)90284-8. [DOI] [PubMed] [Google Scholar]
- Meyer J. L., Fleisch H. Determination of calcium phosphate inhibitor activity. Critical assessment of the methodology. Miner Electrolyte Metab. 1984;10(4):249–258. [PubMed] [Google Scholar]
- Moreno E. C., Kresak M., Hay D. I. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif Tissue Int. 1984 Jan;36(1):48–59. doi: 10.1007/BF02405293. [DOI] [PubMed] [Google Scholar]
- Myers H. M. Structure-activity relationships (SAR) of hydroxyapatite-binding molecules. Calcif Tissue Int. 1987 Jun;40(6):344–348. doi: 10.1007/BF02556697. [DOI] [PubMed] [Google Scholar]
- Nakagawa Y., Abram V., Kézdy F. J., Kaiser E. T., Coe F. L. Purification and characterization of the principal inhibitor of calcium oxalate monohydrate crystal growth in human urine. J Biol Chem. 1983 Oct 25;258(20):12594–12600. [PubMed] [Google Scholar]
- Nancollas G. H., Mohan M. S. The growth of hydroxyapatite crystals. Arch Oral Biol. 1970 Aug;15(8):731–745. doi: 10.1016/0003-9969(70)90037-3. [DOI] [PubMed] [Google Scholar]
- Oppenheim F. G., Hay D. I., Franzblau C. Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization. Biochemistry. 1971 Nov;10(23):4233–4238. doi: 10.1021/bi00799a013. [DOI] [PubMed] [Google Scholar]
- Perl-Treves D., Addadi L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond B Biol Sci. 1988 Nov 22;235(1279):145–159. doi: 10.1098/rspb.1988.0069. [DOI] [PubMed] [Google Scholar]
- Romberg R. W., Werness P. G., Lollar P., Riggs B. L., Mann K. G. Isolation and characterization of native adult osteonectin. J Biol Chem. 1985 Mar 10;260(5):2728–2736. [PubMed] [Google Scholar]
- Romberg R. W., Werness P. G., Riggs B. L., Mann K. G. Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry. 1986 Mar 11;25(5):1176–1180. doi: 10.1021/bi00353a035. [DOI] [PubMed] [Google Scholar]
- Rüfenacht H. S., Fleisch H. Measurement of inhibitors of calcium phosphate precipitation in plasma ultrafiltrate. Am J Physiol. 1984 May;246(5 Pt 2):F648–F655. doi: 10.1152/ajprenal.1984.246.5.F648. [DOI] [PubMed] [Google Scholar]
- Schlesinger D. H., Hay D. I. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. J Biol Chem. 1977 Mar 10;252(5):1689–1695. [PubMed] [Google Scholar]
- Schumacher H. R., Jr Pathology of crystal deposition diseases. Rheum Dis Clin North Am. 1988 Aug;14(2):269–288. [PubMed] [Google Scholar]
- Shellis R. P. A microcomputer program to evaluate the saturation of complex solutions with respect to biominerals. Comput Appl Biosci. 1988 Aug;4(3):373–379. doi: 10.1093/bioinformatics/4.3.373. [DOI] [PubMed] [Google Scholar]
- Terkeltaub R. A., Santoro D. A., Mandel G., Mandel N. Serum and plasma inhibit neutrophil stimulation by hydroxyapatite crystals. Evidence that serum alpha 2-HS glycoprotein is a potent and specific crystal-bound inhibitor. Arthritis Rheum. 1988 Sep;31(9):1081–1089. doi: 10.1002/art.1780310901. [DOI] [PubMed] [Google Scholar]
- Weiner S. Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Crit Rev Biochem. 1986;20(4):365–408. doi: 10.3109/10409238609081998. [DOI] [PubMed] [Google Scholar]
- Williams G., Sallis J. D. Structural factors influencing the ability of compounds to inhibit hydroxyapatite formation. Calcif Tissue Int. 1982 Mar;34(2):169–177. doi: 10.1007/BF02411229. [DOI] [PubMed] [Google Scholar]
- Williams G., Sallis J. D. Structure--activity relationship of inhibitors of hydroxyapatite formation. Biochem J. 1979 Oct 15;184(1):181–184. doi: 10.1042/bj1840181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Worcester E. M., Nakagawa Y., Coe F. L. Glycoprotein calcium oxalate crystal growth inhibitor in urine. Miner Electrolyte Metab. 1987;13(4):267–272. [PubMed] [Google Scholar]
