Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Mar 15;266(3):869–875.

The cysteine proteinases of the pineapple plant.

A D Rowan 1, D J Buttle 1, A J Barrett 1
PMCID: PMC1131219  PMID: 2327970

Abstract

The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct.

Full text

PDF
869

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anastasi A., Brown M. A., Kembhavi A. A., Nicklin M. J., Sayers C. A., Sunter D. C., Barrett A. J. Cystatin, a protein inhibitor of cysteine proteinases. Improved purification from egg white, characterization, and detection in chicken serum. Biochem J. 1983 Apr 1;211(1):129–138. doi: 10.1042/bj2110129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrett A. J. Cathepsin D. Purification of isoenzymes from human and chicken liver. Biochem J. 1970 Apr;117(3):601–607. doi: 10.1042/bj1170601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buttle D. J., Barrett A. J. Chymopapain. Chromatographic purification and immunological characterization. Biochem J. 1984 Oct 1;223(1):81–88. doi: 10.1042/bj2230081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buttle D. J., Kembhavi A. A., Sharp S. L., Shute R. E., Rich D. H., Barrett A. J. Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex. Biochem J. 1989 Jul 15;261(2):469–476. doi: 10.1042/bj2610469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HEINICKE R. M. Complementary enzyme actions in the clotting of milk. Science. 1953 Dec 18;118(3077):753–754. doi: 10.1126/science.118.3077.753. [DOI] [PubMed] [Google Scholar]
  6. Iida S., Sasaki M., Ota S. Immunological cross-reaction between thiol proteases of plant origin: stem and fruit bromelains. J Biochem. 1973 Feb;73(2):377–386. [PubMed] [Google Scholar]
  7. OTA S., FU T. H., HIROHATA R. Studies on bromelain. II. Its activation and fractionation. J Biochem. 1961 Jun;49:532–537. doi: 10.1093/oxfordjournals.jbchem.a127340. [DOI] [PubMed] [Google Scholar]
  8. OTA S., MOORE S., STEIN W. H. PREPARATION AND CHEMICAL PROPERTIES OF PURIFIED STEM AND FRUIT BROMELAINS. Biochemistry. 1964 Feb;3:180–185. doi: 10.1021/bi00890a007. [DOI] [PubMed] [Google Scholar]
  9. Ota S., Horie K., Hagino F., Hashimoto C., Date H. Fractionation and some properties of the proteolytically active components of bromelains in the stem and the fruit of the pineapple plant. J Biochem. 1972 May;71(5):817–830. doi: 10.1093/oxfordjournals.jbchem.a129831. [DOI] [PubMed] [Google Scholar]
  10. Ota S., Muta E., Katahira Y., Okamoto Y. Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains. J Biochem. 1985 Jul;98(1):219–228. doi: 10.1093/oxfordjournals.jbchem.a135261. [DOI] [PubMed] [Google Scholar]
  11. Ota S. On a minor component of proteolytic enzymes contained in the pineapple fruit. J Biochem. 1966 May;59(5):463–468. doi: 10.1093/oxfordjournals.jbchem.a128328. [DOI] [PubMed] [Google Scholar]
  12. Ritonja A., Rowan A. D., Buttle D. J., Rawlings N. D., Turk V., Barrett A. J. Stem bromelain: amino acid sequence and implications for weak binding of cystatin. FEBS Lett. 1989 Apr 24;247(2):419–424. doi: 10.1016/0014-5793(89)81383-3. [DOI] [PubMed] [Google Scholar]
  13. Rowan A. D., Buttle D. J., Barrett A. J. Ananain: a novel cysteine proteinase found in pineapple stem. Arch Biochem Biophys. 1988 Nov 15;267(1):262–270. doi: 10.1016/0003-9861(88)90031-8. [DOI] [PubMed] [Google Scholar]
  14. Sasaki M., Kato T., Iida S. Antigenic determinant common to four kinds of thiol proteases of plant origin. J Biochem. 1973 Sep;74(3):635–637. doi: 10.1093/oxfordjournals.jbchem.a130287. [DOI] [PubMed] [Google Scholar]
  15. Thomas J. M., Hodes M. E. A new discontinuous buffer system for the electrophoresis of cationic proteins at near-neutral pH. Anal Biochem. 1981 Nov 15;118(1):194–196. doi: 10.1016/0003-2697(81)90178-0. [DOI] [PubMed] [Google Scholar]
  16. Toro-Goyco E., Maretzki A., Matos M. L. Isolation, purification, and partial characterization of pinguinain, the proteolytic enzyme from Bromelia pinguin L. Arch Biochem Biophys. 1968 Jul;126(1):91–104. doi: 10.1016/0003-9861(68)90563-8. [DOI] [PubMed] [Google Scholar]
  17. Toro-Goyco E., Rodríguez-Costas I. Immunochemical studies on pinguinain, A sulfhydryl plant protease. Arch Biochem Biophys. 1976 Aug;175(2):359–366. doi: 10.1016/0003-9861(76)90522-1. [DOI] [PubMed] [Google Scholar]
  18. Yamada F., Takahashi N., Murachi T. Purification and characterization of a proteinase from pineapple fruit, fruit bromelain FA2. J Biochem. 1976 Jun;79(6):1223–1234. doi: 10.1093/oxfordjournals.jbchem.a131176. [DOI] [PubMed] [Google Scholar]
  19. Zucker S., Buttle D. J., Nicklin M. J., Barrett A. J. The proteolytic activities of chymopapain, papain, and papaya proteinase III. Biochim Biophys Acta. 1985 Apr 5;828(2):196–204. doi: 10.1016/0167-4838(85)90057-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES