Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Mar 15;266(3):925–928.

Exchange of fluorinated glucose across the red-cell membrane measured by 19F-n.m.r. magnetization transfer.

J R Potts 1, A M Hounslow 1, P W Kuchel 1
PMCID: PMC1131228  PMID: 2327975

Abstract

The 19F n.m.r. spectrum of 3-fluoro-3-deoxy-D-glucose (3FG) in a red-cell suspension was observed to contain separate resonances from the intra- and extra-cellular populations of both the alpha- and beta-anomers. This phenomenon was used with an n.m.r. spin-transfer procedure to measure the rate of exchange of the anomers across the human red-cell membrane under equilibrium-exchange conditions at 37 degrees C. The beta-anomer crossed the membrane significantly more quickly than the alpha-anomer. At a total 3FG concentration of 9.3 mM; the first-order rate constants for the efflux of the alpha- and beta-anomers were 0.41 +/- 0.15 and 0.88 +/- 0.20 s-1 respectively. The measurable 3FG exchange was inhibited by 75 and 100% respectively by the glucose-transport inhibitors cytochalasin B and phloretin. Glucose inhibited the exchange of 3FG, and the results were consistent with glucose and 3FG binding to the hexose-transport protein with similar affinity.

Full text

PDF
925

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnett J. E., Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J. 1973 Feb;131(2):211–221. doi: 10.1042/bj1310211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloch R. Inhibition of glucose transport in the human erythrocyte by cytochalasin B. Biochemistry. 1973 Nov 6;12(23):4799–4801. doi: 10.1021/bi00747a036. [DOI] [PubMed] [Google Scholar]
  3. Brahm J. Urea permeability of human red cells. J Gen Physiol. 1983 Jul;82(1):1–23. doi: 10.1085/jgp.82.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown T. R., Ogawa S. 31P nuclear magnetic resonance kinetic measurements on adenylatekinase. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3627–3631. doi: 10.1073/pnas.74.9.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carruthers A., Melchior D. L. Transport of alpha- and beta-D-glucose by the intact human red cell. Biochemistry. 1985 Jul 16;24(15):4244–4250. doi: 10.1021/bi00336a065. [DOI] [PubMed] [Google Scholar]
  6. Eilam Y., Stein W. D. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Biochim Biophys Acta. 1972 Apr 14;266(1):161–173. doi: 10.1016/0005-2736(72)90132-0. [DOI] [PubMed] [Google Scholar]
  7. FAUST R. G. Monosaccharide penetration into human red blood cells by an altered diffusion mechanism. J Cell Comp Physiol. 1960 Oct;56:103–121. doi: 10.1002/jcp.1030560205. [DOI] [PubMed] [Google Scholar]
  8. Helgerson A. L., Carruthers A. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry. 1989 May 30;28(11):4580–4594. doi: 10.1021/bi00437a012. [DOI] [PubMed] [Google Scholar]
  9. Kovác P., Yeh H. J., Glaudemans C. P. Synthesis and n.m.r. spectra of methyl 2-deoxy-2-fluoro- and 3-deoxy-3-fluoro-alpha- and beta-D-glucopyranosides. Carbohydr Res. 1987 Nov 15;169:23–34. doi: 10.1016/0008-6215(87)80239-2. [DOI] [PubMed] [Google Scholar]
  10. Kuchel P. W., Chapman B. E., Potts J. R. Glucose transport in human erythrocytes measured using 13C NMR spin transfer. FEBS Lett. 1987 Jul 13;219(1):5–10. doi: 10.1016/0014-5793(87)81180-8. [DOI] [PubMed] [Google Scholar]
  11. London R. E., Gabel S. A. Determination of membrane potential and cell volume by 19F NMR using trifluoroacetate and trifluoroacetamide probes. Biochemistry. 1989 Mar 21;28(6):2378–2382. doi: 10.1021/bi00432a006. [DOI] [PubMed] [Google Scholar]
  12. Lowe A. G., Walmsley A. R. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta. 1986 May 28;857(2):146–154. doi: 10.1016/0005-2736(86)90342-1. [DOI] [PubMed] [Google Scholar]
  13. Potts J. R., Kirk K., Kuchel P. W. Characterization of the transport of the nonelectrolyte dimethyl methylphosphonate across the red cell membrane. NMR Biomed. 1989 Apr;1(4):198–204. doi: 10.1002/nbm.1940010408. [DOI] [PubMed] [Google Scholar]
  14. Riley G. J., Taylor N. F. The interaction of 3-deoxy-3-fluoro-D-glucose with the hexose-transport system of the human erythrocyte. Biochem J. 1973 Dec;135(4):773–777. doi: 10.1042/bj1350773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson G., Chapman B. E., Kuchel P. W. 31P NMR spin-transfer in the phosphoglyceromutase reaction. Eur J Biochem. 1984 Sep 17;143(3):643–649. doi: 10.1111/j.1432-1033.1984.tb08417.x. [DOI] [PubMed] [Google Scholar]
  16. SAVITZ D., SIDEL V. W., SOLOMON A. K. OSMOTIC PROPERTIES OF HUMAN RED CELLS. J Gen Physiol. 1964 Sep;48:79–94. doi: 10.1085/jgp.48.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weiser M. B., Razin M., Stein W. D. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Biochim Biophys Acta. 1983 Jan 19;727(2):379–388. doi: 10.1016/0005-2736(83)90423-6. [DOI] [PubMed] [Google Scholar]
  18. Wheeler T. J. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Biochim Biophys Acta. 1986 Nov 17;862(2):387–398. doi: 10.1016/0005-2736(86)90242-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES