Abstract
Co-administration of glucagon and vasopressin to rat liver perfused with buffer containing 1.3 mM-Ca2+ induces a 4-fold increase in Pi in the subsequently isolated mitochondria (from approx. 9 to approx. 40 nmol/mg of mitochondrial protein). This increase is not attributable to PPi hydrolysis, and is not observed if the perfusate Ca2+ is lowered from 1.3 mM to 50 microM. The increase in mitochondrial Pi closely parallels that of mitochondrial Ca2+; when the increase in Pi and Ca2+ accumulation is maximal, the molar ratio is close to that in Ca3(PO4)2. Measurement of changes in the perfusate Pi revealed that, whereas administration of glucagon or vasopressin alone brought about a rapid decline in perfusate Pi, the largest decrease (reflecting net retention of Pi by the liver) was observed when the hormone was co-administered in the presence of 1.3 mM-Ca2+. The synergistic action of glucagon plus vasopressin was nullified by lowering the perfusate Ca2+ to 50 microM. The data provide evidence that, whereas glucagon may be able to alter Pi fluxes directly in intact liver, any alterations induced by vasopressin are indirect and result only from its action of mobilizing Ca2+.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altin J. G., Bygrave F. L. Second messengers and the regulation of Ca2+ fluxes by Ca2+-mobilizing agonists in rat liver. Biol Rev Camb Philos Soc. 1988 Nov;63(4):551–611. doi: 10.1111/j.1469-185x.1988.tb00670.x. [DOI] [PubMed] [Google Scholar]
- Altin J. G., Bygrave F. L. Synergistic stimulation of Ca2+ uptake by glucagon and Ca2+-mobilizing hormones in the perfused rat liver. A role for mitochondria in long-term Ca2+ homoeostasis. Biochem J. 1986 Sep 15;238(3):653–661. doi: 10.1042/bj2380653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Assimacopoulos-Jeannet F., McCormack J. G., Jeanrenaud B. Vasopressin and/or glucagon rapidly increases mitochondrial calcium and oxidative enzyme activities in the perfused rat liver. J Biol Chem. 1986 Jul 5;261(19):8799–8804. [PubMed] [Google Scholar]
- Blumenthal N. C., Betts F., Posner A. S. Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res. 1977 Oct 20;23(3):245–250. doi: 10.1007/BF02012793. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
- Bracht A., Bracht A. K., Schwab A. J., Scholz R. Transport of inorganic anions in perfused rat liver. Eur J Biochem. 1981 Mar;114(3):471–479. doi: 10.1111/j.1432-1033.1981.tb05169.x. [DOI] [PubMed] [Google Scholar]
- Bygrave F. L. Mitochondria and the control of intracellular calcium. Biol Rev Camb Philos Soc. 1978 Feb;53(1):43–79. doi: 10.1111/j.1469-185x.1978.tb00992.x. [DOI] [PubMed] [Google Scholar]
- Davidson A. M., Halestrap A. P. Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187. Biochem J. 1988 Sep 1;254(2):379–384. doi: 10.1042/bj2540379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson A. M., Halestrap A. P. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content. Biochem J. 1987 Sep 15;246(3):715–723. doi: 10.1042/bj2460715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Venanzi F., Peña F., Jimenez V. O., De Alvarado H. Effect of glucagon, epinephrine, cyclic 3',5'-AMP, N6-2'-0-dibutyryl cyclic 3',5'-AMP and insulin upon the phosphate exchange of the isolated perfused fed rat liver. Endocrinology. 1974 Sep;95(3):741–748. doi: 10.1210/endo-95-3-741. [DOI] [PubMed] [Google Scholar]
- Halestrap A. P. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta. 1989 Mar 23;973(3):355–382. doi: 10.1016/s0005-2728(89)80378-0. [DOI] [PubMed] [Google Scholar]
- Hughes B. P., Barritt G. J. Effects of glucagon and N6O2'-dibutyryladenosine 3':5'-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J. 1978 Oct 15;176(1):295–304. doi: 10.1042/bj1760295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medina G., Illingworth J. A. Some hormonal effects on myocardial phosphate efflux. Biochem J. 1984 Nov 15;224(1):153–162. doi: 10.1042/bj2240153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medina G., Illingworth J. Some factors affecting phosphate transport in a perfused rat heart preparation. Biochem J. 1980 May 15;188(2):297–211. doi: 10.1042/bj1880297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinhart P. H., Taylor W. M., Bygrave F. L. Calcium ion fluxes induced by the action of alpha-adrenergic agonists in perfused rat liver. Biochem J. 1982 Dec 15;208(3):619–630. doi: 10.1042/bj2080619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinhart P. H., van de Pol E., Taylor W. M., Bygrave F. L. An assessment of the calcium content of rat liver mitochondria in vivo. Biochem J. 1984 Mar 1;218(2):415–420. doi: 10.1042/bj2180415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sestoft L., Kristensen L. O. Determination of unidirectional fluxes of phosphate across plasma membrane in isolated perfused rat liver. Am J Physiol. 1979 May;236(5):C202–C210. doi: 10.1152/ajpcell.1979.236.5.C202. [DOI] [PubMed] [Google Scholar]
- Siess E. A., Kientsch-Engel R. I., Fahimi F. M., Wieland O. H. Possible role of Pi supply in mitochondrial actions of glucagon. Eur J Biochem. 1984 Jun 15;141(3):543–548. doi: 10.1111/j.1432-1033.1984.tb08227.x. [DOI] [PubMed] [Google Scholar]
- Wohlrab H. Molecular aspects of inorganic phosphate transport in mitochondria. Biochim Biophys Acta. 1986;853(2):115–134. doi: 10.1016/0304-4173(86)90007-8. [DOI] [PubMed] [Google Scholar]
- Zahlten R. N., Hochberg A. A., Stratman F. W., Lardy H. A. Glucagon-stimulated phosphorylation of mitochondrial and lysosomal membranes of rat liver in vivo. Proc Natl Acad Sci U S A. 1972 Apr;69(4):800–804. doi: 10.1073/pnas.69.4.800. [DOI] [PMC free article] [PubMed] [Google Scholar]