Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Apr 1;267(1):105–109. doi: 10.1042/bj2670105

Histamine and a guanine nucleotide increase calcium permeability in pig aortic microsomal fractions.

L M Blayney 1, A C Newby 1
PMCID: PMC1131251  PMID: 2139327

Abstract

ATP-dependent Ca2+ accumulation was measured in pig aortic microsomal fractions containing plasmalemma and endoplasmic reticulum. In vesicles sonicated with histamine, to allow access to internally located receptor sites, guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), added to activate externally located guanine-nucleotide-transducing proteins, caused a concentration-dependent decrease in steady-state Ca2+ accumulation that was reversed by guanosine 5'-[beta-thio]diphosphate. In the presence of p[NH]ppG, sonication with histamine produced a concentration-dependent inhibition of Ca2+ accumulation that could be antagonized by the H1 antagonist mepyramine, but not by the H2 antagonist cimetidine. The inhibition of steady-state Ca2+ accumulation could have resulted from an inhibition of ATP-dependent Ca2+ uptake or a stimulation of Ca2+ release. We observed, however, that p[NH]ppG plus histamine stimulated, rather than inhibited, Ca2(+)-ATPase activity. We concluded that p[NH]ppG and histamine acted together to increase Ca2+ permeability. In support of this, p[NH]ppG accelerated efflux of Ca2+ from passively loaded vesicles sonicated with, but not without, histamine. The effect of p[NH]ppG was unlikely to be due to Ins(1,4,5)P3 (and hence release from endoplasmic-reticulum vesicles), since addition of Ins(1,4,5)P3 to vesicles sonicated with histamine did not alter steady-state Ca2+ accumulation. Our results therefore suggest that histamine and p[NH]ppG increased the permeability of the plasmalemma vesicles and may thus model the process of receptor-mediated Ca2+ entry into intact cells.

Full text

PDF
105

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benham C. D., Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature. 1987 Jul 16;328(6127):275–278. doi: 10.1038/328275a0. [DOI] [PubMed] [Google Scholar]
  2. Blayney L., Thomas H., Muir J., Henderson A. Action of caffeine on calcium transport by isolated fractions of myofibrils, mitochondria, and sarcoplasmic reticulum from rabbit heart. Circ Res. 1978 Oct;43(4):520–526. doi: 10.1161/01.res.43.4.520. [DOI] [PubMed] [Google Scholar]
  3. Bolton T. B. Calcium metabolism in vascular smooth muscle. Br Med Bull. 1986 Oct;42(4):421–429. doi: 10.1093/oxfordjournals.bmb.a072161. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Choquette D., Hakim G., Filoteo A. G., Plishker G. A., Bostwick J. R., Penniston J. T. Regulation of plasma membrane Ca2+ ATPases by lipids of the phosphatidylinositol cycle. Biochem Biophys Res Commun. 1984 Dec 28;125(3):908–915. doi: 10.1016/0006-291x(84)91369-x. [DOI] [PubMed] [Google Scholar]
  6. Gomperts B. D. Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature. 1983 Nov 3;306(5938):64–66. doi: 10.1038/306064a0. [DOI] [PubMed] [Google Scholar]
  7. Hallam T. J., Rink T. J. Receptor-mediated Ca2+ entry: diversity of function and mechanism. Trends Pharmacol Sci. 1989 Jan;10(1):8–10. doi: 10.1016/0165-6147(89)90092-8. [DOI] [PubMed] [Google Scholar]
  8. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kanaide H., Matsumoto T., Nakamura M. Inhibition of calcium transients in cultured vascular smooth muscle cells by pertussis toxin. Biochem Biophys Res Commun. 1986 Oct 15;140(1):195–203. doi: 10.1016/0006-291x(86)91076-4. [DOI] [PubMed] [Google Scholar]
  11. Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
  12. Litosch I., Fain J. N. Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sci. 1986 Jul 21;39(3):187–194. doi: 10.1016/0024-3205(86)90529-1. [DOI] [PubMed] [Google Scholar]
  13. Matsumoto T., Kanaide H., Nishimura J., Shogakiuchi Y., Kobayashi S., Nakamura M. Histamine activates H1-receptors to induce cytosolic free calcium transients in cultured vascular smooth muscle cells from rat aorta. Biochem Biophys Res Commun. 1986 Feb 26;135(1):172–177. doi: 10.1016/0006-291x(86)90958-7. [DOI] [PubMed] [Google Scholar]
  14. Meissner G. Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem. 1984 Feb 25;259(4):2365–2374. [PubMed] [Google Scholar]
  15. Missiaen L., Kanmura Y., Wuytack F., Casteels R. Carbachol partially inhibits the plasma-membrane Ca2+-pump in microsomes from pig stomach smooth muscle. Biochem Biophys Res Commun. 1988 Jan 29;150(2):681–686. doi: 10.1016/0006-291x(88)90445-7. [DOI] [PubMed] [Google Scholar]
  16. Mostafa M. H., Nelson D. R., Shukla S. D., Hanahan D. J. Rabbit platelet calcium ATPase differs from the human erythrocyte (Ca2+ + Mg2+)-ATPase in its response to three purified phospholipases A2, exogenous phospholipids and calmodulin. Biochim Biophys Acta. 1984 Oct 3;776(2):259–266. doi: 10.1016/0005-2736(84)90215-3. [DOI] [PubMed] [Google Scholar]
  17. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  18. Pfaffinger P. J., Martin J. M., Hunter D. D., Nathanson N. M., Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature. 1985 Oct 10;317(6037):536–538. doi: 10.1038/317536a0. [DOI] [PubMed] [Google Scholar]
  19. Rapoport R. M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res. 1986 Mar;58(3):407–410. doi: 10.1161/01.res.58.3.407. [DOI] [PubMed] [Google Scholar]
  20. Rengasamy A., Feinberg H. Inositol 1,4,5-trisphosphate-induced calcium release from platelet plasma membrane vesicles. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1021–1026. doi: 10.1016/0006-291x(88)90731-0. [DOI] [PubMed] [Google Scholar]
  21. Resink T. J., Dimitrov D., Stucki S., Bühler F. R. The influence of activating hormones on human platelet membrane Ca2+-ATPase activity. Biochem Biophys Res Commun. 1986 Jul 16;138(1):215–223. doi: 10.1016/0006-291x(86)90268-8. [DOI] [PubMed] [Google Scholar]
  22. Rodbell M., Lin M. C., Salomon Y., Londos C., Harwood J. P., Martin B. R., Rendell M., Berman M. Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase systems to hormones: evidence for multisite transition states. Adv Cyclic Nucleotide Res. 1975;5:3–29. [PubMed] [Google Scholar]
  23. Ross E. M., Gilman A. G. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem. 1980;49:533–564. doi: 10.1146/annurev.bi.49.070180.002533. [DOI] [PubMed] [Google Scholar]
  24. Sasaki K., Sato M. A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature. 1987 Jan 15;325(6101):259–262. doi: 10.1038/325259a0. [DOI] [PubMed] [Google Scholar]
  25. Somlyo A. P. Excitation-contraction coupling and the ultrastructure of smooth muscle. Circ Res. 1985 Oct;57(4):497–507. doi: 10.1161/01.res.57.4.497. [DOI] [PubMed] [Google Scholar]
  26. Somlyo A. V., Bond M., Somlyo A. P., Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5231–5235. doi: 10.1073/pnas.82.15.5231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  28. Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
  29. Van de Voorde J., Leusen I. Role of the endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur J Pharmacol. 1983 Jan 28;87(1):113–120. doi: 10.1016/0014-2999(83)90056-0. [DOI] [PubMed] [Google Scholar]
  30. Watkins R. W., Davidson I. W. Action of histamine on phasic and tonic components of vascular smooth muscle contraction. Experientia. 1980 May 15;36(5):582–584. doi: 10.1007/BF01965815. [DOI] [PubMed] [Google Scholar]
  31. Watras J., Benevolensky D. Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1987 Dec 10;931(3):354–363. doi: 10.1016/0167-4889(87)90227-8. [DOI] [PubMed] [Google Scholar]
  32. Wuytack F., Casteels R. Demonstration of a (Ca2+ + Mg2+)-ATPase activity probably related to Ca2+ transport in the microsomal fraction of porcine coronary artery smooth muscle. Biochim Biophys Acta. 1980 Jan 25;595(2):257–263. doi: 10.1016/0005-2736(80)90088-7. [DOI] [PubMed] [Google Scholar]
  33. Wuytack F., Raeymaekers L., De Schutter G., Casteels R. Demonstration of the phosphorylated intermediates of the Ca2+-transport ATPase in a microsomal fraction and in a (Ca2+ + Mg2+)-ATPase purified from smooth muscle by means of calmodulin affinity chromatography. Biochim Biophys Acta. 1982 Dec 8;693(1):45–52. doi: 10.1016/0005-2736(82)90469-2. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto H., van Breemen C. Inositol-1,4,5-trisphosphate releases calcium from skinned cultured smooth muscle cells. Biochem Biophys Res Commun. 1985 Jul 16;130(1):270–274. doi: 10.1016/0006-291x(85)90412-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES