Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Apr 1;267(1):273–276. doi: 10.1042/bj2670273

Acyl-CoA chain length affects the specificity of various carnitine palmitoyltransferases with respect to carnitine analogues. Possible application in the discrimination of different carnitine palmitoyltransferase activities.

M S Murthy 1, R R Ramsay 1, S V Pande 1
PMCID: PMC1131278  PMID: 2327985

Abstract

The activities of carnitine palmitoyltransferases (CPTs) of mitochondrial outer and inner membranes and of peroxisomes have been studied with carnitine analogues, namely DL-thiolcarnitine, DL-sulphocarnitine and L-aminocarnitine, using palmitoyl-CoA or octanoyl-CoA as co-substrate. With sulphocarnitine, both of the mitochondrial CPTs and the malonyl-CoA-sensitive CPT of peroxisomes showed appreciable activity with palmitoyl-CoA, but relatively lower activity when octanoyl-CoA was the co-substrate. The soluble CPT of peroxisomes did not show any activity with sulphocarnitine in the presence of either acyl-CoA. With thiolcarnitine, all of the CPTs showed more activity with palmitoyl-CoA than with octanoyl-CoA. None of the CPTs showed any activity with aminocarnitine and palmitoyl-CoA, but when the acyl donor was octanoyl-CoA, both of the malonyl-CoA-sensitive CPT enzymes showed considerable activity, unlike the malonyl-CoA-insensitive CPT isoenzymes. Aminocarnitine inhibited palmitoylcarnitine formation by both of the mitochondrial CPTs and by the CPT of gradient-purified peroxisomes, but the purified peroxisomal soluble CPT was not inhibited. These results show that the interaction of CPT enzymes with carnitine analogues, as substrates or inhibitors, is influenced by the chain length of the acyl-CoA substrate, and that the use of the appropriate carnitine analogue and acyl-CoA is likely to be useful for the discrimination of the various CPT activities in CPT deficiency disorders.

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bieber L. L. Carnitine. Annu Rev Biochem. 1988;57:261–283. doi: 10.1146/annurev.bi.57.070188.001401. [DOI] [PubMed] [Google Scholar]
  2. Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
  3. Comte J., Gautheron D. C. Preparation of outer membrane from pig heart mitochondria. Methods Enzymol. 1979;55:98–104. doi: 10.1016/0076-6879(79)55013-7. [DOI] [PubMed] [Google Scholar]
  4. Derrick J. P., Ramsay R. R. L-carnitine acyltransferase in intact peroxisomes is inhibited by malonyl-CoA. Biochem J. 1989 Sep 15;262(3):801–806. doi: 10.1042/bj2620801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gandour R. D., Colucci W. J., Stelly T. C., Brady P. S., Brady L. J. Hemipalmitoylcarnitinium, a strong competitive inhibitor of purified hepatic carnitine palmitoyltransferase. Arch Biochem Biophys. 1988 Dec;267(2):515–520. doi: 10.1016/0003-9861(88)90058-6. [DOI] [PubMed] [Google Scholar]
  6. Ghosh M. K., Hajra A. K. A rapid method for the isolation of peroxisomes from rat liver. Anal Biochem. 1986 Nov 15;159(1):169–174. doi: 10.1016/0003-2697(86)90323-4. [DOI] [PubMed] [Google Scholar]
  7. Hajra A. K., Bishop J. E. Preparation of radioactive acyl coenzyme A. Methods Enzymol. 1986;122:50–53. doi: 10.1016/0076-6879(86)22147-3. [DOI] [PubMed] [Google Scholar]
  8. Jenkins D. L., Griffith O. W. Antiketogenic and hypoglycemic effects of aminocarnitine and acylaminocarnitines. Proc Natl Acad Sci U S A. 1986 Jan;83(2):290–294. doi: 10.1073/pnas.83.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jenkins D. L., Griffith O. W. DL-aminocarnitine and acetyl-DL-aminocarnitine. Potent inhibitors of carnitine acyltransferases and hepatic triglyceride catabolism. J Biol Chem. 1985 Nov 25;260(27):14748–14755. [PubMed] [Google Scholar]
  10. Kanamaru T., Shinagawa S., Asai M., Okazaki H., Sugiyama Y., Fujita T., Iwatsuka H., Yoneda M. Emeriamine, an antidiabetic beta-aminobetaine derived from a novel fungal metabolite. Life Sci. 1985 Jul 22;37(3):217–223. doi: 10.1016/0024-3205(85)90647-2. [DOI] [PubMed] [Google Scholar]
  11. McGarry J. D., Woeltje K. F., Kuwajima M., Foster D. W. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase. Diabetes Metab Rev. 1989 May;5(3):271–284. doi: 10.1002/dmr.5610050305. [DOI] [PubMed] [Google Scholar]
  12. Miyazawa S., Ozasa H., Osumi T., Hashimoto T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem. 1983 Aug;94(2):529–542. doi: 10.1093/oxfordjournals.jbchem.a134384. [DOI] [PubMed] [Google Scholar]
  13. Murthy M. S., Pande S. V. Malonyl-CoA binding site and the overt carnitine palmitoyltransferase activity reside on the opposite sides of the outer mitochondrial membrane. Proc Natl Acad Sci U S A. 1987 Jan;84(2):378–382. doi: 10.1073/pnas.84.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Murthy M. S., Pande S. V. Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J. 1987 Dec 15;248(3):727–733. doi: 10.1042/bj2480727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pande S. V., Murthy M. S., Noël H. Differential effects of phosphatidylcholine and cardiolipin on carnitine palmitoyltransferase activity. Biochim Biophys Acta. 1986 Jun 27;877(2):223–230. doi: 10.1016/0005-2760(86)90298-5. [DOI] [PubMed] [Google Scholar]
  16. Parsons D. F., Williams G. R., Chance B. Characteristics of isolated and purified preparations of the outer and inner membranes of mitochondria. Ann N Y Acad Sci. 1966 Jul 14;137(2):643–666. doi: 10.1111/j.1749-6632.1966.tb50188.x. [DOI] [PubMed] [Google Scholar]
  17. Ramsay R. R., Derrick J. P., Friend A. S., Tubbs P. K. Purification and properties of the soluble carnitine palmitoyltransferase from bovine liver mitochondria. Biochem J. 1987 Jun 1;244(2):271–278. doi: 10.1042/bj2440271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shinagawa S., Kanamaru T., Harada S., Asai M., Okazaki H. Chemistry and inhibitory activity of long chain fatty acid oxidation of emeriamine and its analogues. J Med Chem. 1987 Aug;30(8):1458–1463. doi: 10.1021/jm00391a030. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES