Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addae S. K., Lotspeich W. D. Glutamine balance in metabolic acidosis as studied with the artificial kidney. Am J Physiol. 1968 Aug;215(2):278–281. doi: 10.1152/ajplegacy.1968.215.2.278. [DOI] [PubMed] [Google Scholar]
- Alpern R. J., Star R., Seldin D. W. Hepatic renal interrelations in acid-base regulation. Am J Physiol. 1988 Oct;255(4 Pt 2):F807–F809. doi: 10.1152/ajprenal.1988.255.4.F807. [DOI] [PubMed] [Google Scholar]
- Atkinson D. E., Bourke E. Metabolic aspects of the regulation of systemic pH. Am J Physiol. 1987 Jun;252(6 Pt 2):F947–F956. doi: 10.1152/ajprenal.1987.252.6.F947. [DOI] [PubMed] [Google Scholar]
- Atkinson D. E., Camien M. N. The role or urea synthesis in the removal of metabolic bicarbonate and the regulation of blood pH. Curr Top Cell Regul. 1982;21:261–302. doi: 10.1016/b978-0-12-152821-8.50014-1. [DOI] [PubMed] [Google Scholar]
- Ballard R. A., Vinocur B., Reynolds J. W., Wennberg R. P., Merritt A., Sweetman L., Nyhan W. L. Transient hyperammonemia of the preterm infant. N Engl J Med. 1978 Oct 26;299(17):920–925. doi: 10.1056/NEJM197810262991704. [DOI] [PubMed] [Google Scholar]
- Batshaw M. L., Bursilow S. W. Asymptomatic hyperammonemia in low birthweight infants. Pediatr Res. 1978 Mar;12(3):221–224. doi: 10.1203/00006450-197803000-00012. [DOI] [PubMed] [Google Scholar]
- Bean E. S., Atkinson D. E. Regulation of the rate of urea synthesis in liver by extracellular pH. A major factor in pH homeostasis in mammals. J Biol Chem. 1984 Feb 10;259(3):1552–1559. [PubMed] [Google Scholar]
- Boon L., Meijer A. J. Control by pH of urea synthesis in isolated rat hepatocytes. Eur J Biochem. 1988 Mar 1;172(2):465–469. doi: 10.1111/j.1432-1033.1988.tb13911.x. [DOI] [PubMed] [Google Scholar]
- Burger H. J., Gebhardt R., Mayer C., Mecke D. Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology. 1989 Jan;9(1):22–28. doi: 10.1002/hep.1840090105. [DOI] [PubMed] [Google Scholar]
- Cersosimo E., Williams P. E., Radosevich P. M., Hoxworth B. T., Lacy W. W., Abumrad N. N. Role of glutamine in adaptations in nitrogen metabolism during fasting. Am J Physiol. 1986 Jun;250(6 Pt 1):E622–E628. doi: 10.1152/ajpendo.1986.250.6.E622. [DOI] [PubMed] [Google Scholar]
- Cohen N. S., Kyan F. S., Kyan S. S., Cheung C. W., Raijman L. The apparent Km of ammonia for carbamoyl phosphate synthetase (ammonia) in situ. Biochem J. 1985 Jul 1;229(1):205–211. doi: 10.1042/bj2290205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper A. J., Nieves E., Coleman A. E., Filc-DeRicco S., Gelbard A. S. Short-term metabolic fate of [13N]ammonia in rat liver in vivo. J Biol Chem. 1987 Jan 25;262(3):1073–1080. [PubMed] [Google Scholar]
- Cooper A. J., Nieves E., Rosenspire K. C., Filc-DeRicco S., Gelbard A. S., Brusilow S. W. Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine(amide) in rat liver. J Biol Chem. 1988 Sep 5;263(25):12268–12273. [PubMed] [Google Scholar]
- Corvera S., García-Sáinz J. A. Hormonal stimulation of mitochondrial glutaminase. Effects of vasopressin, angiotensin II, adrenaline and glucagon. Biochem J. 1983 Mar 15;210(3):957–960. doi: 10.1042/bj2100957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corvera S., García-Sáinz J. A. Vasopressin and angiotensin II stimulate ureogenesis through increased mitochondrial citrulline production. Life Sci. 1982 Nov 29;31(22):2493–2498. doi: 10.1016/0024-3205(82)90755-x. [DOI] [PubMed] [Google Scholar]
- DU RUISSEAU J. P., GREENSTEIN J. P., WINITZ M., BIRNBAUM S. M. Studies on the metabolism of amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity. Arch Biochem Biophys. 1957 May;68(1):161–171. doi: 10.1016/0003-9861(57)90337-5. [DOI] [PubMed] [Google Scholar]
- Deuel T. F., Louie M., Lerner A. Glutamine synthetase from rat liver. Purification, properties, and preparation of specific antisera. J Biol Chem. 1978 Sep 10;253(17):6111–6118. [PubMed] [Google Scholar]
- Dodgson S. J., Forster R. E., 2nd, Schwed D. A., Storey B. T. Contribution of matrix carbonic anhydrase to citrulline synthesis in isolated guinea pig liver mitochondria. J Biol Chem. 1983 Jun 25;258(12):7696–7701. [PubMed] [Google Scholar]
- Dodgson S. J., Forster R. E., 2nd, Storey B. T., Mela L. Mitochondrial carbonic anhydrase. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5562–5566. doi: 10.1073/pnas.77.9.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elder J. A., Lehninger A. L. Respiration-dependent transport of carbon dioxide into rat liver mitochondria. Biochemistry. 1973 Feb 27;12(5):976–982. doi: 10.1021/bi00729a029. [DOI] [PubMed] [Google Scholar]
- Fafournoux P., Demigné C., Rémésy C., Le Cam A. Bidirectional transport of glutamine across the cell membrane in rat liver. Biochem J. 1983 Nov 15;216(2):401–408. doi: 10.1042/bj2160401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaasbeek Janzen J. W., Gebhardt R., ten Voorde G. H., Lamers W. H., Charles R., Moorman A. F. Heterogeneous distribution of glutamine synthetase during rat liver development. J Histochem Cytochem. 1987 Jan;35(1):49–54. doi: 10.1177/35.1.2878950. [DOI] [PubMed] [Google Scholar]
- Gaasbeek Janzen J. W., Lamers W. H., Moorman A. F., de Graaf A., Los J. A., Charles R. Immunohistochemical localization of carbamoyl-phosphate synthetase (ammonia) in adult rat liver; evidence for a heterogeneous distribution. J Histochem Cytochem. 1984 Jun;32(6):557–564. doi: 10.1177/32.6.6373912. [DOI] [PubMed] [Google Scholar]
- Gaasbeek Janzen J. W., Moorman A. F., Lamers W. H., Charles R. Development of the heterogeneous distribution of carbamoyl-phosphate synthetase (ammonia) in rat-liver parenchyma during postnatal development. J Histochem Cytochem. 1985 Dec;33(12):1205–1211. doi: 10.1177/33.12.4067274. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Burger H. J., Heini H., Schreiber K. L., Mecke D. Alterations of hepatic enzyme levels and of the acinar distribution of glutamine synthetase in response to experimental liver injury in the rat. Hepatology. 1988 Jul-Aug;8(4):822–830. doi: 10.1002/hep.1840080421. [DOI] [PubMed] [Google Scholar]
- Gebhardt R. Different proliferative activity in vitro of periportal and perivenous hepatocytes. Scand J Gastroenterol Suppl. 1988;151:8–18. doi: 10.3109/00365528809095909. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Ebert A., Bauer G. Heterogeneous expression of glutamine synthetase mRNA in rat liver parenchyma revealed by in situ hybridization and Northern blot analysis of RNA from periportal and perivenous hepatocytes. FEBS Lett. 1988 Dec 5;241(1-2):89–93. doi: 10.1016/0014-5793(88)81037-8. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Jirtle R., Moorman A. F., Lamers W. H., Michalopoulos G. Induction of glutamine synthetase and transient co-expression with carbamoylphosphate synthetase in hepatocytes transplanted into fat pads of syngeneic hosts. Histochemistry. 1989;92(4):337–342. doi: 10.1007/BF00500550. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Kleemann E. Hormonal regulation of amino acid transport system N in primary cultures of rat hepatocytes. Eur J Biochem. 1987 Jul 15;166(2):339–344. doi: 10.1111/j.1432-1033.1987.tb13520.x. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Mecke D. Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 1983;2(4):567–570. doi: 10.1002/j.1460-2075.1983.tb01464.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gebhardt R., Mecke D. Permissive effect of dexamethasone on glucagon induction of urea-cycle enzymes in perifused primary monolayer cultures of rat hepatocytes. Eur J Biochem. 1979 Jun;97(1):29–35. doi: 10.1111/j.1432-1033.1979.tb13082.x. [DOI] [PubMed] [Google Scholar]
- Gebhardt R., Mecke D. The role of growth hormone, dexamethasone and triiodothyronine in the regulation of glutamine synthetase in primary cultures of rat hepatocytes. Eur J Biochem. 1979 Oct 15;100(2):519–525. doi: 10.1111/j.1432-1033.1979.tb04197.x. [DOI] [PubMed] [Google Scholar]
- Guder W. G., Habicht A., Kleissl J., Schmidt U., Wieland O. H. The diagnostic significance of liver cell inhomogeneity: serum enzymes in patients with central liver necrosis and the distribution of glutamate dehydrogenase in normal human liver. Z Klin Chem Klin Biochem. 1975 Jul;13(7):311–318. doi: 10.1515/cclm.1975.13.7.311. [DOI] [PubMed] [Google Scholar]
- Hayes M. R., McGivan J. D. Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes. Biochem J. 1982 Apr 15;204(1):365–368. doi: 10.1042/bj2040365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häussinger D., Akerboom T. P., Sies H. The role of pH and the lack of a requirement for hydorgencarbonate in the regulation of hepatic glutamine metabolism. Hoppe Seylers Z Physiol Chem. 1980 Jul;361(7):995–101. doi: 10.1515/bchm2.1980.361.2.995. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W. Hepatic urea synthesis and pH regulation. Role of CO2, HCO3-, pH and the activity of carbonic anhydrase. Eur J Biochem. 1985 Oct 15;152(2):381–386. doi: 10.1111/j.1432-1033.1985.tb09208.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W. Hepatocyte heterogeneity in ammonia metabolism: impairment of glutamine synthesis in CCl4 induced liver cell necrosis with no effect on urea synthesis. Chem Biol Interact. 1984 Feb;48(2):191–194. doi: 10.1016/0009-2797(84)90120-0. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W. Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver. Eur J Biochem. 1983 Nov 2;136(2):421–425. doi: 10.1111/j.1432-1033.1983.tb07759.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W. Regulation of hepatic glutamate metabolism. Role of 2-oxoacids in glutamate release from isolated perfused rat liver. Eur J Biochem. 1984 Sep 17;143(3):491–497. doi: 10.1111/j.1432-1033.1984.tb08397.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W., Sies H. Regulation of flux through glutaminase and glutamine synthetase in isolated perfused rat liver. Biochim Biophys Acta. 1983 Jan 25;755(2):272–278. doi: 10.1016/0304-4165(83)90214-3. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Gerok W., Sies H. The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem J. 1986 May 15;236(1):261–265. doi: 10.1042/bj2360261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häussinger D., Gerok W., Sies H. The effect of urea synthesis on extracellular pH in isolated perfused rat liver. Biochem J. 1986 May 15;236(1):261–265. doi: 10.1042/bj2360261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häussinger D. Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem. 1983 Jun 15;133(2):269–275. doi: 10.1111/j.1432-1033.1983.tb07458.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Kaiser S., Stehle T., Gerok W. Liver carbonic anhydrase and urea synthesis. The effect of diuretics. Biochem Pharmacol. 1986 Oct 1;35(19):3317–3322. doi: 10.1016/0006-2952(86)90429-6. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F., Bauers K., Gerok W. Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur J Biochem. 1990 Mar 30;188(3):689–695. doi: 10.1111/j.1432-1033.1990.tb15451.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lenzen C., Soboll S. Acid-base regulation of hepatic glutamine degradation. Contrib Nephrol. 1988;63:161–166. doi: 10.1159/000415715. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Sies H., Gerok W. Functional hepatocyte heterogeneity in ammonia metabolism. The intercellular glutamine cycle. J Hepatol. 1985;1(1):3–14. doi: 10.1016/s0168-8278(85)80063-5. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Sies H. Hepatic glutamine metabolism under the influence of the portal ammonia concentration in the perfused rat liver. Eur J Biochem. 1979 Nov 1;101(1):179–184. doi: 10.1111/j.1432-1033.1979.tb04230.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Soboll S., Meijer A. J., Gerok W., Tager J. M., Sies H. Role of plasma membrane transport in hepatic glutamine metabolism. Eur J Biochem. 1985 Nov 4;152(3):597–603. doi: 10.1111/j.1432-1033.1985.tb09237.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Steeb R., Gerok W. Ammonium and bicarbonate homeostasis in chronic liver disease. Klin Wochenschr. 1990 Feb 1;68(3):175–182. doi: 10.1007/BF01649081. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Stehle T., Colombo J. P. Benzoate stimulates glutamate release from perfused rat liver. Biochem J. 1989 Dec 15;264(3):837–843. doi: 10.1042/bj2640837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Häussinger D., Stehle T., Gerok W. Glutamine metabolism in isolated perfused rat liver. The transamination pathway. Biol Chem Hoppe Seyler. 1985 Jun;366(6):527–536. doi: 10.1515/bchm3.1985.366.1.527. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Stehle T., Gerok W., Tran-Thi T. A., Decker K. Hepatocyte heterogeneity in response to extracellular ATP. Eur J Biochem. 1987 Dec 15;169(3):645–650. doi: 10.1111/j.1432-1033.1987.tb13656.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Stehle T. Hepatocyte heterogeneity in response to icosanoids. The perivenous scavenger cell hypothesis. Eur J Biochem. 1988 Aug 1;175(2):395–403. doi: 10.1111/j.1432-1033.1988.tb14209.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Stoll B., Stehle T., Gerok W. Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur J Biochem. 1989 Oct 20;185(1):189–195. doi: 10.1111/j.1432-1033.1989.tb15101.x. [DOI] [PubMed] [Google Scholar]
- Häussinger D. Urea synthesis and CO2/HCO3- compartmentation in isolated perfused rat liver. Biol Chem Hoppe Seyler. 1986 Aug;367(8):741–750. doi: 10.1515/bchm3.1986.367.2.741. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Weiss L., Sies H. Activation of pyruvate dehydrogenase during metabolism of ammonium ions in hemoglobin-free perfused rat liver. Eur J Biochem. 1975 Apr 1;52(3):421–431. doi: 10.1111/j.1432-1033.1975.tb04010.x. [DOI] [PubMed] [Google Scholar]
- Jacob R., Rosenthal N., Barrett E. J. Characterization of glutamine transport by liver plasma membrane vesicles. Am J Physiol. 1986 Nov;251(5 Pt 1):E509–E514. doi: 10.1152/ajpendo.1986.251.5.E509. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Bradford N. M., McGivan J. D. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells. Biochem J. 1978 Dec 15;176(3):827–836. doi: 10.1042/bj1760827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joseph S. K., McGivan J. D. The effect of ammonium chloride and glucagon on the metabolism of glutamine in isolated liver cells from starved rats. Biochim Biophys Acta. 1978 Sep 21;543(1):16–28. doi: 10.1016/0304-4165(78)90450-6. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Verhoeven A. J., Meijer A. J. Effect of trifluoperazine on the stimulation by Ca2+-dependent hormones of gluconeogenesis from glutamine in isolated hepatocytes. Biochim Biophys Acta. 1981 Nov 5;677(3-4):506–511. doi: 10.1016/0304-4165(81)90266-x. [DOI] [PubMed] [Google Scholar]
- Jungermann K., Katz N. Functional specialization of different hepatocyte populations. Physiol Rev. 1989 Jul;69(3):708–764. doi: 10.1152/physrev.1989.69.3.708. [DOI] [PubMed] [Google Scholar]
- Jungermann K. Metabolic zonation of liver parenchyma: significance for the regulation of glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes Metab Rev. 1987 Jan;3(1):269–293. doi: 10.1002/dmr.5610030112. [DOI] [PubMed] [Google Scholar]
- Kaiser S., Gerok W., Häussinger D. Ammonia and glutamine metabolism in human liver slices: new aspects on the pathogenesis of hyperammonaemia in chronic liver disease. Eur J Clin Invest. 1988 Oct;18(5):535–542. doi: 10.1111/j.1365-2362.1988.tb01053.x. [DOI] [PubMed] [Google Scholar]
- Kamemoto E. S., Atkinson D. E. Modulation of the activity of rat liver acetylglutamate synthase by pH and arginine concentration. Arch Biochem Biophys. 1985 Nov 15;243(1):100–107. doi: 10.1016/0003-9861(85)90777-5. [DOI] [PubMed] [Google Scholar]
- Kari F. W., Yoshihara H., Thurman R. G. Urea synthesis from ammonia in periportal and pericentral regions of the liver lobule. Effect of oxygen. Eur J Biochem. 1987 Feb 16;163(1):1–7. doi: 10.1111/j.1432-1033.1987.tb10728.x. [DOI] [PubMed] [Google Scholar]
- Kashiwagura T., Erecińska M., Wilson D. F. pH dependence of hormonal regulation of gluconeogenesis and urea synthesis from glutamine in suspensions of hepatocytes. J Biol Chem. 1985 Jan 10;260(1):407–414. [PubMed] [Google Scholar]
- Katz N. R. Methods for the study of liver cell heterogeneity. Histochem J. 1989 Sep-Oct;21(9-10):517–529. doi: 10.1007/BF01753352. [DOI] [PubMed] [Google Scholar]
- Khatra B. S., Smith R. B., 3rd, Millikan W. J., Sewell C. W., Warren W. D., Rudman D. Activities of Krebs-Henseleit enzymes in normal and cirrhotic human liver. J Lab Clin Med. 1974 Nov;84(5):708–715. [PubMed] [Google Scholar]
- Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
- Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamers W. H., Gaasbeek Janzen J. W., Kortschot A. T., Charles R., Moorman A. F. Development of enzymic zonation in liver parenchyma is related to development of acinar architecture. Differentiation. 1987;35(3):228–235. doi: 10.1111/j.1432-0436.1987.tb00173.x. [DOI] [PubMed] [Google Scholar]
- Lamers W. H., Hilberts A., Furt E., Smith J., Jonges G. N., van Noorden C. J., Janzen J. W., Charles R., Moorman A. F. Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology. 1989 Jul;10(1):72–76. doi: 10.1002/hep.1840100115. [DOI] [PubMed] [Google Scholar]
- Lamers W. H., Høynes K. E., Zonneveld D., Moorman A. F., Charles R. Noradrenergic innervation of developing rat and spiny mouse liver. Its relation to the development of the liver architecture and enzymic zonation. Anat Embryol (Berl) 1988;178(2):175–181. doi: 10.1007/BF02463651. [DOI] [PubMed] [Google Scholar]
- Lamers W. H., Janzen J. W., Moorman A. F., Charles R., Knecht E., Martínez-Ramón A., Hernández-Yago J., Grisolía S. Immunohistochemical localization of glutamate dehydrogenase in rat liver: plasticity of distribution during development and with hormone treatment. J Histochem Cytochem. 1988 Jan;36(1):41–47. doi: 10.1177/36.1.3335769. [DOI] [PubMed] [Google Scholar]
- Lang F., Stehle T., Häussinger D. Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflugers Arch. 1989 Jan;413(3):209–216. doi: 10.1007/BF00583532. [DOI] [PubMed] [Google Scholar]
- Lenzen C., Soboll S., Sies H., Häussinger D. pH control of hepatic glutamine degradation. Role of transport. Eur J Biochem. 1987 Jul 15;166(2):483–488. doi: 10.1111/j.1432-1033.1987.tb13541.x. [DOI] [PubMed] [Google Scholar]
- Lueck J. D., Miller L. L. The effect of perfusate pH on glutamine metabolism in the isolated perfused rat liver. J Biol Chem. 1970 Oct 25;245(20):5491–5497. [PubMed] [Google Scholar]
- Lusty C. J. Carbamoylphosphate synthetase I of rat-liver mitochondria. Purification, properties, and polypeptide molecular weight. Eur J Biochem. 1978 Apr 17;85(2):373–383. doi: 10.1111/j.1432-1033.1978.tb12249.x. [DOI] [PubMed] [Google Scholar]
- Mackenzie W. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance. Am J Physiol. 1986 Feb;250(2 Pt 2):F181–F188. doi: 10.1152/ajprenal.1986.250.2.F181. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M. Characteristics of the activation of glutaminase by ammonia in sonicated rat liver mitochondria. Biochim Biophys Acta. 1983 Sep 13;759(3):296–302. doi: 10.1016/0304-4165(83)90327-6. [DOI] [PubMed] [Google Scholar]
- McGivan J. D., Lacey J. H., Joseph S. K. Localization and some properties of phosphate-dependent glutaminase in disrupted liver mitochondria. Biochem J. 1980 Nov 15;192(2):537–542. doi: 10.1042/bj1920537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijer A. J. Channeling of ammonia from glutaminase to carbamoyl-phosphate synthetase in liver mitochondria. FEBS Lett. 1985 Oct 28;191(2):249–251. doi: 10.1016/0014-5793(85)80018-1. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Lof C., Ramos I. C., Verhoeven A. J. Control of ureogenesis. Eur J Biochem. 1985 Apr 1;148(1):189–196. doi: 10.1111/j.1432-1033.1985.tb08824.x. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Verhoeven A. J. Regulation of hepatic glutamine metabolism. Biochem Soc Trans. 1986 Dec;14(6):1001–1004. doi: 10.1042/bst0141001. [DOI] [PubMed] [Google Scholar]
- Mizutani A. Cytochemical demonstration of ornithine carbamoyltransferase activity in liver mitochondria of rat and mouse. J Histochem Cytochem. 1968 Mar;16(3):172–180. doi: 10.1177/16.3.172. [DOI] [PubMed] [Google Scholar]
- Moorman A. F., Vermeulen J. L., Charles R., Lamers W. H. Localization of ammonia-metabolizing enzymes in human liver: ontogenesis of heterogeneity. Hepatology. 1989 Mar;9(3):367–372. doi: 10.1002/hep.1840090305. [DOI] [PubMed] [Google Scholar]
- Moorman A. F., de Boer P. A., Geerts W. J., van den Zande L., Lamers W. H., Charles R. Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level. J Histochem Cytochem. 1988 Jul;36(7):751–755. doi: 10.1177/36.7.2898495. [DOI] [PubMed] [Google Scholar]
- Oliver J., Koelz A. M., Costello J., Bourke E. Acid-base induced alterations in glutamine metabolism and ureogenesis in perfused muscle and liver of the rat. Eur J Clin Invest. 1977 Oct;7(5):445–449. doi: 10.1111/j.1365-2362.1977.tb01632.x. [DOI] [PubMed] [Google Scholar]
- Oster J. R., Perez G. O. Acid-base disturbances in liver disease. J Hepatol. 1986;2(2):299–306. doi: 10.1016/s0168-8278(86)80089-7. [DOI] [PubMed] [Google Scholar]
- Pierson D. L., Brien J. M. Human carbamylphosphate synthetase I. Stabilization, purification, and partial characterization of the enzyme from human liver. J Biol Chem. 1980 Aug 25;255(16):7891–7895. [PubMed] [Google Scholar]
- Pösö A. R., Penttilä K. E., Suolinna E. M., Lindros K. O. Urea synthesis in freshly isolated and in cultured periportal and perivenous hepatocytes. Biochem J. 1986 Oct 15;239(2):263–267. doi: 10.1042/bj2390263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quistorff B., Grunnet N. Dual-digitonin-pulse perfusion. Concurrent sampling of periportal and perivenous cytosol of rat liver for determination of metabolites and enzyme activities. Biochem J. 1987 Apr 1;243(1):87–95. doi: 10.1042/bj2430087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall D. J., Wood C. M., Perry S. F., Bergman H., Maloiy G. M., Mommsen T. P., Wright P. A. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature. 1989 Jan 12;337(6203):165–166. doi: 10.1038/337165a0. [DOI] [PubMed] [Google Scholar]
- Rappaport A. M. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol. 1976 May;157(3):215–243. doi: 10.1016/s0005-8165(76)80083-2. [DOI] [PubMed] [Google Scholar]
- Rognstad R. CO2 metabolism in the liver. Arch Biochem Biophys. 1983 Apr 15;222(2):442–448. doi: 10.1016/0003-9861(83)90543-x. [DOI] [PubMed] [Google Scholar]
- Rubio V., Ramponi G., Grisolia S. Carbamoyl phosphate synthetase I of human liver. Purification, some properties and immunological cross-reactivity with the rat liver enzyme. Biochim Biophys Acta. 1981 May 14;659(1):150–160. doi: 10.1016/0005-2744(81)90279-5. [DOI] [PubMed] [Google Scholar]
- Rémésy C., Demigné C., Fafournoux P. Control of ammonia distribution ratio across the liver cell membrane and of ureogenesis by extracellular pH. Eur J Biochem. 1986 Jul 15;158(2):283–288. doi: 10.1111/j.1432-1033.1986.tb09748.x. [DOI] [PubMed] [Google Scholar]
- Rémésy C., Morand C., Demigné C., Fafournoux P. Control of hepatic utilization of glutamine by transport processes or cellular metabolism in rats fed a high protein diet. J Nutr. 1988 May;118(5):569–578. doi: 10.1093/jn/118.5.569. [DOI] [PubMed] [Google Scholar]
- SHANK R. E., MORRISON G., CHENG C. H., KARL I., SCHWARTZ R. Cell heterogeneity within the hepatic lobule: quantitative histochemistry. J Histochem Cytochem. 1959 Jul;7(4):237–239. doi: 10.1177/7.4.237. [DOI] [PubMed] [Google Scholar]
- Schimassek H., Gerok W. Control of the levels of free amino acids in plasma by the liver. Biochem Z. 1965 Dec 31;343(4):407–415. [PubMed] [Google Scholar]
- Sestoft L., Bartels P. D., Folke M. Pathophysiology of metabolic acidosis: effect of low pH on the hepatic uptake of lactate, pyruvate and alanine. Clin Physiol. 1982 Feb;2(1):51–58. doi: 10.1111/j.1475-097x.1982.tb00006.x. [DOI] [PubMed] [Google Scholar]
- Smith D. D., Jr, Campbell J. W. Distribution of glutamine synthetase and carbamoyl-phosphate synthetase I in vertebrate liver. Proc Natl Acad Sci U S A. 1988 Jan;85(1):160–164. doi: 10.1073/pnas.85.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snodgrass P. J., Lund P. Allosteric properties of phosphate-activated glutaminase of human liver mitochondria. Biochim Biophys Acta. 1984 Mar 22;798(1):21–27. doi: 10.1016/0304-4165(84)90005-9. [DOI] [PubMed] [Google Scholar]
- Stoll B., Hüssinger D. Functional hepatocyte heterogeneity. Vascular 2-oxoglutarate is almost exclusively taken up by perivenous, glutamine-synthetase-containing hepatocytes. Eur J Biochem. 1989 May 15;181(3):709–716. doi: 10.1111/j.1432-1033.1989.tb14781.x. [DOI] [PubMed] [Google Scholar]
- Taylor P. M., Rennie M. J. Perivenous localisation of Na-dependent glutamate transport in perfused rat liver. FEBS Lett. 1987 Sep 14;221(2):370–374. doi: 10.1016/0014-5793(87)80958-4. [DOI] [PubMed] [Google Scholar]
- Tizianello A., De Ferrari G., Garibotto G., Gurreri G., Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980 May;65(5):1162–1173. doi: 10.1172/JCI109771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UGARTE G., PINO M. E., VALENZUELA J., LORCA F. UREA CYCLE ENZYMATIC ABNORMALITIES IN PATIENTS IN ENDOGENOUS HEPATIC COMA. Gastroenterology. 1963 Aug;45:182–188. [PubMed] [Google Scholar]
- Verhoeven A. J., van Iwaarden J. F., Joseph S. K., Meijer A. J. Control of rat-liver glutaminase by ammonia and pH. Eur J Biochem. 1983 Jun 1;133(1):241–244. doi: 10.1111/j.1432-1033.1983.tb07454.x. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., Van Roermund C. W., Meijer A. J. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria. Eur J Biochem. 1984 Jul 16;142(2):247–254. doi: 10.1111/j.1432-1033.1984.tb08278.x. [DOI] [PubMed] [Google Scholar]
- Watford M., Smith E. M. Distribution of hepatic glutaminase activity and mRNA in perivenous and periportal rat hepatocytes. Biochem J. 1990 Apr 1;267(1):265–267. doi: 10.1042/bj2670265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welbourne T. C. Hepatic glutaminase flux regulation of glutamine homeostasis. Studies in vivo. Biol Chem Hoppe Seyler. 1986 Apr;367(4):301–305. doi: 10.1515/bchm3.1986.367.1.301. [DOI] [PubMed] [Google Scholar]
- Welbourne T. C. Interorgan glutamine flow in metabolic acidosis. Am J Physiol. 1987 Dec;253(6 Pt 2):F1069–F1076. doi: 10.1152/ajprenal.1987.253.6.F1069. [DOI] [PubMed] [Google Scholar]
- Welbourne T., Weber M., Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest. 1972 Jul;51(7):1852–1860. doi: 10.1172/JCI106987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh F. A. Changes in distribution of enzymes within the liver lobule during adaptive increases. J Histochem Cytochem. 1972 Feb;20(2):107–111. doi: 10.1177/20.2.107. [DOI] [PubMed] [Google Scholar]
- Wolf C. R., Moll E., Friedberg T., Oesch F., Buchmann A., Kuhlmann W. D., Kunz H. W. Characterization, localization and regulation of a novel phenobarbital-inducible form of cytochrome P450, compared with three further P450-isoenzymes, NADPH P450-reductase, glutathione transferases and microsomal epoxide hydrolase. Carcinogenesis. 1984 Aug;5(8):993–1001. doi: 10.1093/carcin/5.8.993. [DOI] [PubMed] [Google Scholar]
- Wong B. S., Chenoweth M. E., Dunn A. Possible growth hormone control of liver glutamine synthetase activity in rats. Endocrinology. 1980 Jan;106(1):268–274. doi: 10.1210/endo-106-1-268. [DOI] [PubMed] [Google Scholar]
- de Groot C. J., Zonneveld D., de Laaf R. T., Dingemanse M. A., Mooren P. G., Moorman A. F., Lamers W. H., Charles R. Developmental and hormonal regulation of carbamoyl-phosphate synthase gene expression in rat liver: evidence for control mechanisms at different levels in the perinatal period. Biochim Biophys Acta. 1986 Feb 24;866(1):61–67. doi: 10.1016/0167-4781(86)90101-6. [DOI] [PubMed] [Google Scholar]
- de Groot C. J., ten Voorde G. H., van Andel R. E., te Kortschot A., Gaasbeek Janzen J. W., Wilson R. H., Moorman A. F., Charles R., Lamers W. H. Reciprocal regulation of glutamine synthetase and carbamoylphosphate synthetase levels in rat liver. Biochim Biophys Acta. 1987 Apr 29;908(3):231–240. doi: 10.1016/0167-4781(87)90103-5. [DOI] [PubMed] [Google Scholar]
- de Groot C. J., van Zonneveld A. J., Mooren P. G., Zonneveld D., van den Dool A., van den Bogaert A. J., Lamers W. H., Moorman A. F., Charles R. Regulation of mRNA levels of rat liver carbamoylphosphate synthetase by glucocorticosteroids and cyclic AMP as estimated with a specific cDNA. Biochem Biophys Res Commun. 1984 Nov 14;124(3):882–888. doi: 10.1016/0006-291x(84)91040-4. [DOI] [PubMed] [Google Scholar]