Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Apr 15;267(2):309–315. doi: 10.1042/bj2670309

Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis.

H P Bietlot 1, I Vishnubhatla 1, P R Carey 1, M Pozsgay 1, H Kaplan 1
PMCID: PMC1131288  PMID: 2110449

Abstract

Bacillus thuringiensis produces a 130-140 kDa insecticidal protein in the form of a bipyramidal crystal. The protein in the crystals from the subspecies kurstaki HD-1 and entomocidus was found to contain 16-18 cysteine residues per molecule, present primarily in the disulphide form as cystine. Evidence that all the cysteine residues form symmetrical interchain disulphide linkages in the protein crystal was obtained from the following results: (i) the disulphide diagonal procedure [Brown & Hartley (1966) Biochem. J. 101, 214-228] gave only unpaired cysteic acid peptides in diagonal maps; (ii) the disulphide bridges were shown to be labile in dilute alkali and the crystal protein could be released quantitatively with 1 mM-2-mercaptoethanol; (iii) the thiol groups of the released crystal protein were shown by competitive labelling [Kaplan, Stevenson & Hartley (1971) Biochem. J. 124, 289-299] to have the same chemical properties as exposed groups on the surface of the protein; (iv) the thiol groups in the released crystal protein reacted quantitatively with iodoacetate or iodoacetamide. The finding that all the disulphide linkages in the protein crystal are interchain and symmetrical accounts for its alkali-lability and for the high degree of conservation in the primary structure of the cystine-containing regions of the protein from various subspecies.

Full text

PDF
309

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adang M. J., Staver M. J., Rocheleau T. A., Leighton J., Barker R. F., Thompson D. V. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp. kurstaki HD-73 and their toxicity to Manduca sexta. Gene. 1985;36(3):289–300. doi: 10.1016/0378-1119(85)90184-2. [DOI] [PubMed] [Google Scholar]
  2. Andrews R. E., Jr, Faust R. M., Wabiko H., Raymond K. C., Bulla L. A., Jr The biotechnology of Bacillus thuringiensis. Crit Rev Biotechnol. 1987;6(2):163–232. doi: 10.3109/07388558709113596. [DOI] [PubMed] [Google Scholar]
  3. Aronson A. I., Beckman W., Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiol Rev. 1986 Mar;50(1):1–24. doi: 10.1128/mr.50.1.1-24.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aronson J. N., Arvidson H. C. Toxic Trypsin Digest Fragment from the Bacillus thuringiensis Parasporal Protein. Appl Environ Microbiol. 1987 Feb;53(2):416–421. doi: 10.1128/aem.53.2.416-421.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bietlot H., Carey P. R., Choma C., Kaplan H., Lessard T., Pozsgay M. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochem J. 1989 May 15;260(1):87–91. doi: 10.1042/bj2600087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brousseau R., Masson L. Bacillus thuringiensis insecticidal crystal toxins: gene structure and mode of action. Biotechnol Adv. 1988;6(4):697–724. doi: 10.1016/0734-9750(88)91920-9. [DOI] [PubMed] [Google Scholar]
  7. Brown J. R., Hartley B. S. Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem J. 1966 Oct;101(1):214–228. doi: 10.1042/bj1010214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Calogero S., Albertini A. M., Fogher C., Marzari R., Galizzi A. Expression of a cloned Bacillus thuringiensis delta-endotoxin gene in Bacillus subtilis. Appl Environ Microbiol. 1989 Feb;55(2):446–453. doi: 10.1128/aem.55.2.446-453.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Couche G. A., Pfannenstiel M. A., Nickerson K. W. Structural disulfide bonds in the Bacillus thuringiensis subsp. israelensis protein crystal. J Bacteriol. 1987 Jul;169(7):3281–3288. doi: 10.1128/jb.169.7.3281-3288.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Creighton T. E. Disulfide bonds as probes of protein folding pathways. Methods Enzymol. 1986;131:83–106. doi: 10.1016/0076-6879(86)31036-x. [DOI] [PubMed] [Google Scholar]
  11. Dastidar P. G., Nickerson K. W. Interchain crosslinks in the entomocidal Bacillus thuringiensis protein crystal. FEBS Lett. 1979 Dec 15;108(2):411–414. doi: 10.1016/0014-5793(79)80575-x. [DOI] [PubMed] [Google Scholar]
  12. Geiser M., Schweitzer S., Grimm C. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene. 1986;48(1):109–118. doi: 10.1016/0378-1119(86)90357-4. [DOI] [PubMed] [Google Scholar]
  13. HIRS C. H. The oxidation of ribonuclease with performic acid. J Biol Chem. 1956 Apr;219(2):611–621. [PubMed] [Google Scholar]
  14. Hefford M. A., Evans R. M., Oda G., Kaplan H. Unusual chemical properties of N-terminal histidine residues of glucagon and vasoactive intestinal peptide. Biochemistry. 1985 Feb 12;24(4):867–874. doi: 10.1021/bi00325a009. [DOI] [PubMed] [Google Scholar]
  15. Jaquet F., Hütter R., Lüthy P. Specificity of Bacillus thuringiensis Delta-Endotoxin. Appl Environ Microbiol. 1987 Mar;53(3):500–504. doi: 10.1128/aem.53.3.500-504.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kaplan H., Stevenson K. J., Hartley B. S. Competitive labelling, a method for determining the reactivity of individual groups in proteins. The amino groups of porcine elastase. Biochem J. 1971 Sep;124(2):289–299. doi: 10.1042/bj1240289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  18. Schnepf H. E., Whiteley H. R. Delineation of a toxin-encoding segment of a Bacillus thuringiensis crystal protein gene. J Biol Chem. 1985 May 25;260(10):6273–6280. [PubMed] [Google Scholar]
  19. Shaked Z., Szajewski R. P., Whitesides G. M. Rates of thiol-disulfide interchange reactions involving proteins and kinetic measurements of thiol pKa values. Biochemistry. 1980 Sep 2;19(18):4156–4166. doi: 10.1021/bi00559a004. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto T., McLaughlin R. E. Isolation of a protein from the parasporal crystal of Bacillus thuringiensis var. Kurstaki toxic to the mosquito larva, Aedes taeniorhynchus. Biochem Biophys Res Commun. 1981 Nov 30;103(2):414–421. doi: 10.1016/0006-291x(81)90468-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES