Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 May 15;268(1):201–206. doi: 10.1042/bj2680201

Synthesis of retinoids by human retinal epithelium and transfer to rod outer segments.

S R Das 1, N Bhardwaj 1, P Gouras 1
PMCID: PMC1131412  PMID: 2344357

Abstract

The synthesis and release of 11-cis-retinoids by primary cultures of human retinal pigment epithelium (RPE) and the transfer of these retinoids to co-incubated human rod outer segments (ROS) were studied. Monolayers of 2-3-week-old cultured RPE incorporate tritiated all-trans-retinol, esterify it to the corresponding retinyl palmitate, form 11-cis-retinol and 11-cis-retinaldehyde and release retinaldehyde into the culture medium. The ratio of 11-cis to all-trans isomers of retinol, retinyl palmitate and retinaldehyde formed in the cells along with retinaldehyde released and incorporated into the ROS progressively increases, indicating a progressive increase in the concentration of 11-cis isomer from the time it is formed in RPE cells until its transfer to ROS. Incorporation of 11-cis-retinaldehyde into the ROS is directly related to the amount of albumin present in the media, suggesting the transfer of retinoids from RPE to photoreceptor to be a protein-mediated process. Events leading to isomerization, esterification, oxidation and release of retinoids by human RPE and incorporation of retinoids into ROS can therefore be examined in vitro.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREWS J. S., FUTTERMAN S. METABOLISM OF THE RETINA. V. THE ROLE OF MICROSOMES IN VITAMIN A ESTERIFICATION IN THE VISUAL CYCLE. J Biol Chem. 1964 Dec;239:4073–4076. [PubMed] [Google Scholar]
  2. Adler A. J., Evans C. D. Some functional characteristics of purified bovine interphotoreceptor retinol-binding protein. Invest Ophthalmol Vis Sci. 1985 Mar;26(3):273–282. [PubMed] [Google Scholar]
  3. Berman E. R., Horowitz J., Segal N., Fisher S., Feeney-Burns L. Enzymatic esterification of vitamin A in the pigment epithelium of bovine retina. Biochim Biophys Acta. 1980 Jun 5;630(1):36–46. doi: 10.1016/0304-4165(80)90135-x. [DOI] [PubMed] [Google Scholar]
  4. Bernstein P. S., Law W. C., Rando R. R. Biochemical characterization of the retinoid isomerase system of the eye. J Biol Chem. 1987 Dec 15;262(35):16848–16857. [PubMed] [Google Scholar]
  5. Bernstein P. S., Law W. C., Rando R. R. Isomerization of all-trans-retinoids to 11-cis-retinoids in vitro. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1849–1853. doi: 10.1073/pnas.84.7.1849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chader G. J. Interphotoreceptor retinoid-binding protein (IRBP): a model protein for molecular biological and clinically relevant studies. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1989 Jan;30(1):7–22. [PubMed] [Google Scholar]
  7. Das S. R., Gouras P. Retinoid metabolism in cultured human retinal pigment epithelium. Biochem J. 1988 Mar 1;250(2):459–465. doi: 10.1042/bj2500459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deigner P. S., Law W. C., Cañada F. J., Rando R. R. Membranes as the energy source in the endergonic transformation of vitamin A to 11-cis-retinol. Science. 1989 May 26;244(4907):968–971. doi: 10.1126/science.2727688. [DOI] [PubMed] [Google Scholar]
  9. Flood M. T., Gouras P., Kjeldbye H. Growth characteristics and ultrastructure of human retinal pigment epithelium in vitro. Invest Ophthalmol Vis Sci. 1980 Nov;19(11):1309–1320. [PubMed] [Google Scholar]
  10. Fulton B. S., Rando R. R. Biosynthesis of 11-cis-retinoids and retinyl esters by bovine pigment epithelium membranes. Biochemistry. 1987 Dec 1;26(24):7938–7945. doi: 10.1021/bi00398a059. [DOI] [PubMed] [Google Scholar]
  11. Ho M. T., Massey J. B., Pownall H. J., Anderson R. E., Hollyfield J. G. Mechanism of vitamin A movement between rod outer segments, interphotoreceptor retinoid-binding protein, and liposomes. J Biol Chem. 1989 Jan 15;264(2):928–935. [PubMed] [Google Scholar]
  12. KRINSKY N. I. The enzymatic esterification of vitamin A. J Biol Chem. 1958 Jun;232(2):881–894. [PubMed] [Google Scholar]
  13. Kwok-Keung Fung B., Stryer L. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci U S A. 1980 May;77(5):2500–2504. doi: 10.1073/pnas.77.5.2500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lion F., Rotmans J. P., Daemen F. J., Bonting S. L. Biochemical aspects of the visual process. XXVII. Stereospecificity of ocular retinol dehydrogenases and the visual cycle. Biochim Biophys Acta. 1975 Apr 19;384(2):283–292. doi: 10.1016/0005-2744(75)90030-3. [DOI] [PubMed] [Google Scholar]
  15. Saari J. C., Bredberg D. L. CoA- and non-CoA-dependent retinol esterification in retinal pigment epithelium. J Biol Chem. 1988 Jun 15;263(17):8084–8090. [PubMed] [Google Scholar]
  16. Saari J. C., Bredberg D. L. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J Biol Chem. 1987 Jun 5;262(16):7618–7622. [PubMed] [Google Scholar]
  17. Zimmerman W. F. The distribution and proportions of vitamin A compounds during the visual cycle in the rat. Vision Res. 1974 Sep;14(9):795–802. doi: 10.1016/0042-6989(74)90143-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES