Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jun 1;268(2):359–366. doi: 10.1042/bj2680359

Cytosolic copper-binding proteins in rat and mouse hepatocytes incubated continuously with Cu(II).

F A Palida 1, A Mas 1, L Arola 1, K Bethin 1, P A Lonergan 1, M J Ettinger 1
PMCID: PMC1131440  PMID: 2363678

Abstract

The proteins that bind copper when it first enters cells are likely to play roles in its intracellular distribution and utilization. When hepatocytes were incubated with 64Cu(II), the time-dependence of the subcellular distribution of 64Cu was consistent with one or more cytosolic proteins distributing copper to the mitochondrial and nuclear fractions. Cytosolic copper was reproducibly distributed among four protein fractions from Sephadex G-150 columns at the earliest time (1 min) and at the lowest concentration used [2 microM-64Cu(II)] with both rat and mouse hepatocytes. Copper binding to proteins in these functions was sensitive to copper metabolic status. Hepatocytes from nutritionally copper-deficient rats or neonatal (9-30 days old) developing rats showed an inverse correlation between copper binding to metallothionein and copper binding to proteins in fraction I (approximately 88 kDa apparent) and fraction II (approximately 38 kDa apparent). The distribution of cytosolic 64Cu from the brindled-mouse model of Menkes disease indicated decreased binding by a protein in fraction I. Brindled-mouse hepatocytes also contain decreased levels of a approximately 55 kDa protein or subunit, which most likely represents a liver-specific secondary response to the primary defect. The results are consistent with one or more copper-binding proteins in fractions I and II having significant functions in intracellular copper metabolism.

Full text

PDF
359

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Camakaris J., Mann J. R., Danks D. M. Copper metabolism in mottled mouse mutants: copper concentrations in tissues during development. Biochem J. 1979 Jun 15;180(3):597–604. doi: 10.1042/bj1800597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cox D. R., Palmiter R. D. The metallothionein-I gene maps to mouse chromosome 8: implications for human Menkes' disease. Hum Genet. 1983;64(1):61–64. doi: 10.1007/BF00289481. [DOI] [PubMed] [Google Scholar]
  3. Darwish H. M., Hoke J. E., Ettinger M. J. Kinetics of Cu(II) transport and accumulation by hepatocytes from copper-deficient mice and the brindled mouse model of Menkes disease. J Biol Chem. 1983 Nov 25;258(22):13621–13626. [PubMed] [Google Scholar]
  4. Evans G. W. Copper homeostasis in the mammalian system. Physiol Rev. 1973 Jul;53(3):535–570. doi: 10.1152/physrev.1973.53.3.535. [DOI] [PubMed] [Google Scholar]
  5. Herd S. M., Camakaris J., Christofferson R., Wookey P., Danks D. M. Uptake and efflux of copper-64 in Menkes'-disease and normal continuous lymphoid cell lines. Biochem J. 1987 Oct 15;247(2):341–347. doi: 10.1042/bj2470341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunt D. M. A study of copper treatment and tissue copper levels in the murine congenital copper deficiency, mottled. Life Sci. 1976 Dec 15;19(12):1913–1919. doi: 10.1016/0024-3205(76)90124-7. [DOI] [PubMed] [Google Scholar]
  7. Hunt D. M. Primary defect in copper transport underlies mottled mutants in the mouse. Nature. 1974 Jun 28;249(460):852–854. doi: 10.1038/249852a0. [DOI] [PubMed] [Google Scholar]
  8. Karin M. Metallothioneins: proteins in search of function. Cell. 1985 May;41(1):9–10. doi: 10.1016/0092-8674(85)90051-0. [DOI] [PubMed] [Google Scholar]
  9. Kägi J. H., Kojima Y. Chemistry and biochemistry of metallothionein. Experientia Suppl. 1987;52:25–61. doi: 10.1007/978-3-0348-6784-9_3. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MENKES J. H., ALTER M., STEIGLEDER G. K., WEAKLEY D. R., SUNG J. H. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics. 1962 May;29:764–779. [PubMed] [Google Scholar]
  12. Mann J. R., Camakaris J., Danks D. M., Walliczek E. G. Copper metabolism in mottled mouse mutants: copper therapy of brindled (Mobr) mice. Biochem J. 1979 Jun 15;180(3):605–612. doi: 10.1042/bj1800605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marceau N., Aspin N., Sass-Kortsak A. Absorption of copper 64 from gastrointestinal tract of the rat. Am J Physiol. 1970 Feb;218(2):377–383. doi: 10.1152/ajplegacy.1970.218.2.377. [DOI] [PubMed] [Google Scholar]
  14. Marceau N., Aspin N. The association of the copper derived from ceruloplasmin with cytocuprein. Biochim Biophys Acta. 1973 Dec 6;328(2):351–358. doi: 10.1016/0005-2795(73)90268-7. [DOI] [PubMed] [Google Scholar]
  15. Marceau N., Aspin N. The intracellular distribution of the radiocopper derived from ceruloplasmin and from albumin. Biochim Biophys Acta. 1973 Dec 6;328(2):338–350. doi: 10.1016/0005-2795(73)90267-5. [DOI] [PubMed] [Google Scholar]
  16. Mason R., Bakka A., Samarawickrama G. P., Webb M. Metabolism of zinc and copper in the neonate: accumulation and function of (Zn, Cu)-metallothionein in the liver of the newborn rat. Br J Nutr. 1981 Mar;45(2):375–389. doi: 10.1079/bjn19810113. [DOI] [PubMed] [Google Scholar]
  17. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  18. Nettesheim D. G., Engeseth H. R., Otvos J. D. Products of metal exchange reactions of metallothionein. Biochemistry. 1985 Nov 19;24(24):6744–6751. doi: 10.1021/bi00345a003. [DOI] [PubMed] [Google Scholar]
  19. Owen C. A., Jr, Hazelrig J. B. Copper deficiency and copper toxicity in the rat. Am J Physiol. 1968 Aug;215(2):334–338. doi: 10.1152/ajplegacy.1968.215.2.334. [DOI] [PubMed] [Google Scholar]
  20. Owen C. A., Jr Metabolism of radiocopper (Cu64) in the rat. Am J Physiol. 1965 Nov;209(5):900–904. doi: 10.1152/ajplegacy.1965.209.5.900. [DOI] [PubMed] [Google Scholar]
  21. Packman S., Palmiter R. D., Karin M., O'Toole C. Metallothionein messenger RNA regulation in the mottled mouse and Menkes kinky hair syndrome. J Clin Invest. 1987 May;79(5):1338–1342. doi: 10.1172/JCI112959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Prins H. W., Van den Hamer C. J. Primary biochemical defect in copper metabolism in mice with a recessive X-linked mutation analogous to Menkes' disease in man. J Inorg Biochem. 1979 Feb;10(1):19–27. doi: 10.1016/s0162-0134(00)81002-8. [DOI] [PubMed] [Google Scholar]
  23. Prohaska J. R. Comparison of copper metabolism between brindled mice and dietary copper-deficient mice using 67Cu. J Nutr. 1983 Jun;113(6):1212–1220. doi: 10.1093/jn/113.6.1212. [DOI] [PubMed] [Google Scholar]
  24. Rauch H. Toxic milk, a new mutation affecting cooper metabolism in the mouse. J Hered. 1983 May-Jun;74(3):141–144. doi: 10.1093/oxfordjournals.jhered.a109751. [DOI] [PubMed] [Google Scholar]
  25. Salin M. L., McCord J. M. Superoxide dismutases in polymorphonuclear leukocytes. J Clin Invest. 1974 Oct;54(4):1005–1009. doi: 10.1172/JCI107816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sass-Kortsak A. Copper metabolism. Adv Clin Chem. 1965;8:1–67. doi: 10.1016/s0065-2423(08)60412-6. [DOI] [PubMed] [Google Scholar]
  27. Schmidt C. J., Hamer D. H., McBride O. W. Chromosomal location of human metallothionein genes: implications for Menkes' disease. Science. 1984 Jun 8;224(4653):1104–1106. doi: 10.1126/science.6719135. [DOI] [PubMed] [Google Scholar]
  28. Schmitt R. C., Darwish H. M., Cheney J. C., Ettinger M. J. Copper transport kinetics by isolated rat hepatocytes. Am J Physiol. 1983 Feb;244(2):G183–G191. doi: 10.1152/ajpgi.1983.244.2.G183. [DOI] [PubMed] [Google Scholar]
  29. Sone T., Yamaoka K., Minami Y., Tsunoo H. Induction of metallothionein synthesis in Menkes' and normal lymphoblastoid cells is controlled by the level of intracellular copper. J Biol Chem. 1987 Apr 25;262(12):5878–5885. [PubMed] [Google Scholar]
  30. Terao T., Owen C. A., Jr Effects of copper deficiency and copper loading on 67Cu in supernatants of rat organs. Tohoku J Exp Med. 1976 Nov;120(3):209–217. doi: 10.1620/tjem.120.209. [DOI] [PubMed] [Google Scholar]
  31. Terao T., Owen C. A., Jr Nature of copper compounds in liver supernate and bile of rats: studies with 67 Cu. Am J Physiol. 1973 Mar;224(3):682–686. doi: 10.1152/ajplegacy.1973.224.3.682. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES