Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jun 1;268(2):475–480. doi: 10.1042/bj2680475

Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes.

P J Kersten 1, B Kalyanaraman 1, K E Hammel 1, B Reinhammar 1, T K Kirk 1
PMCID: PMC1131457  PMID: 2163614

Abstract

Lignin peroxidase oxidizes non-phenolic substrates by one electron to give aryl-cation-radical intermediates, which react further to give a variety of products. The present study investigated the possibility that other peroxidative and oxidative enzymes known to catalyse one-electron oxidations may also oxidize non-phenolics to cation-radical intermediates and that this ability is related to the redox potential of the substrate. Lignin peroxidase from the fungus Phanerochaete chrysosporium, horseradish peroxidase (HRP) and laccase from the fungus Trametes versicolor were chosen for investigation with methoxybenzenes as a homologous series of substrates. The twelve methoxybenzene congeners have known half-wave potentials that differ by as much as approximately 1 V. Lignin peroxidase oxidized the ten with the lowest half-wave potentials, whereas HRP oxidized the four lowest and laccase oxidized only 1,2,4,5-tetramethoxybenzene, the lowest. E.s.r. spectroscopy showed that this congener is oxidized to its cation radical by all three enzymes. Oxidation in each case gave the same products: 2,5-dimethoxy-p-benzoquinone and 4,5-dimethoxy-o-benzoquinone, in a 4:1 ratio, plus 2 mol of methanol for each 1 mol of substrate. Using HRP-catalysed oxidation, we showed that the quinone oxygen atoms are derived from water. We conclude that the three enzymes affect their substrates similarly, and that whether an aromatic compound is a substrate depends in large part on its redox potential. Furthermore, oxidized lignin peroxidase is clearly a stronger oxidant than oxidized HRP or laccase. Determination of the enzyme kinetic parameters for the methoxybenzene oxidations demonstrated further differences among the enzymes.

Full text

PDF
475

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrawis A., Johnson K. A., Tien M. Studies on compound I formation of the lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem. 1988 Jan 25;263(3):1195–1198. [PubMed] [Google Scholar]
  2. Andréasson L. E., Reinhammar B. Kinetic studies of Rhus vernicifera laccase. Role of the metal centers in electron transfer. Biochim Biophys Acta. 1976 Oct 11;445(3):579–597. doi: 10.1016/0005-2744(76)90112-1. [DOI] [PubMed] [Google Scholar]
  3. Andréasson L. E., Reinhammar B. The mechanism of electron transfer in laccase-catalysed reactions. Biochim Biophys Acta. 1979 May 10;568(1):145–156. doi: 10.1016/0005-2744(79)90282-1. [DOI] [PubMed] [Google Scholar]
  4. Cavalieri E., Rogan E. Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ Health Perspect. 1985 Dec;64:69–84. doi: 10.1289/ehp.856469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fåhraeus G., Reinhammar B. Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand. 1967;21(9):2367–2378. doi: 10.3891/acta.chem.scand.21-2367. [DOI] [PubMed] [Google Scholar]
  6. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  7. Hammel K. E., Tien M., Kalyanaraman B., Kirk T. K. Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals. J Biol Chem. 1985 Jul 15;260(14):8348–8353. [PubMed] [Google Scholar]
  8. Hayashi Y., Yamazaki I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J Biol Chem. 1979 Sep 25;254(18):9101–9106. [PubMed] [Google Scholar]
  9. Huynh V. B. Biomimetic oxidation of lignin model compounds by simple inorganic complexes. Biochem Biophys Res Commun. 1986 Sep 30;139(3):1104–1110. doi: 10.1016/s0006-291x(86)80291-1. [DOI] [PubMed] [Google Scholar]
  10. Jäger A., Croan S., Kirk T. K. Production of Ligninases and Degradation of Lignin in Agitated Submerged Cultures of Phanerochaete chrysosporium. Appl Environ Microbiol. 1985 Nov;50(5):1274–1278. doi: 10.1128/aem.50.5.1274-1278.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kersten P. J., Tien M., Kalyanaraman B., Kirk T. K. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem. 1985 Mar 10;260(5):2609–2612. [PubMed] [Google Scholar]
  12. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  13. Kirk T. K., Tien M., Kersten P. J., Mozuch M. D., Kalyanaraman B. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Biochem J. 1986 May 15;236(1):279–287. doi: 10.1042/bj2360279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ma X. Y., Rokita S. E. Role of oxygen during horseradish peroxidase turnover and inactivation. Biochem Biophys Res Commun. 1988 Nov 30;157(1):160–165. doi: 10.1016/s0006-291x(88)80027-5. [DOI] [PubMed] [Google Scholar]
  15. Marquez L., Wariishi H., Dunford H. B., Gold M. H. Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem. 1988 Aug 5;263(22):10549–10552. [PubMed] [Google Scholar]
  16. Meunier G., Meunier B. Peroxidase-catalyzed O-demethylation reactions. Quinone-imine formation from 9-methoxyellipticine derivatives. J Biol Chem. 1985 Sep 5;260(19):10576–10582. [PubMed] [Google Scholar]
  17. Nestor L., Reinhammar B., Spiro T. G. 63/65Cu and 1/2H2O isotope shifts in the low-temperature resonance Raman spectrum of fungal laccase. Biochim Biophys Acta. 1986 Feb 14;869(3):286–292. doi: 10.1016/0167-4838(86)90068-3. [DOI] [PubMed] [Google Scholar]
  18. Reinhammar B. R. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. Biochim Biophys Acta. 1972 Aug 17;275(2):245–259. doi: 10.1016/0005-2728(72)90045-x. [DOI] [PubMed] [Google Scholar]
  19. Renganathan V., Miki K., Gold M. H. Role of molecular oxygen in lignin peroxidase reactions. Arch Biochem Biophys. 1986 Apr;246(1):155–161. doi: 10.1016/0003-9861(86)90459-5. [DOI] [PubMed] [Google Scholar]
  20. Tien M., Kirk T. K., Bull C., Fee J. A. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem. 1986 Feb 5;261(4):1687–1693. [PubMed] [Google Scholar]
  21. Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tien M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol. 1987;15(2):141–168. doi: 10.3109/10408418709104456. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES