Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Jul 1;269(1):169–174. doi: 10.1042/bj2690169

Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).

J M Gutteridge 1, L Maidt 1, L Poyer 1
PMCID: PMC1131547  PMID: 2165392

Abstract

A ferric-EDTA complex, prepared directly from FeCl3 or from an oxidized ferrous salt, reacts with H2O2 to form hydroxyl radicals (.OH), which degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, hydroxylate benzoate to form fluorescent dihydroxy products and react with 5,5-dimethylpyrrolidine N-oxide (DMPO) to form a DMPO-OH adduct. Degradation of deoxyribose and benzoate and the hydroxylation of benzoate are substantially inhibited by superoxide dismutase and .OH-radical scavengers such as formate, thiourea and mannitol. Inhibition by the enzyme superoxide dismutase implies that the reduction of the ferric-EDTA complex for participation in the Fenton reaction is superoxide-(O2.-)-dependent, and not H2O2-dependent as frequently implied. When ferric-bipyridyl complex at a molar ratio of 1:4 is substituted for ferric-EDTA complex (molar ratio 1:1) and the same experiments are conducted, oxidant damage is low and deoxyribose and benzoate degradation were poorly if at all inhibited by superoxide dismutase and .OH-radical scavengers. Benzoate hydroxylation, although weak, was, however, more effectively inhibited by superoxide dismutase and .OH-radical scavengers, implicating some role for .OH. The iron-bipyridyl complex had available iron-binding capacity and therefore would not allow iron to remain bound to buffer or detector molecules. Most .OH radicals produced by the iron-bipyridyl complex and H2O2 are likely to damage the bipyridyl molecules first, with few reacting in free solution with the detector molecules. Deoxyribose and benzoate degradation appeared to be mediated by an oxidant species not typical of .OH, and species such as the ferryl ion-bipyridyl complex may have contributed to the damage observed.

Full text

PDF
169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aruoma O. I., Chaudhary S. S., Grootveld M., Halliwell B. Binding of iron(II) ions to the pentose sugar 2-deoxyribose. J Inorg Biochem. 1989 Feb;35(2):149–155. doi: 10.1016/0162-0134(89)80007-8. [DOI] [PubMed] [Google Scholar]
  2. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  3. Grootveld M., Halliwell B. An aromatic hydroxylation assay for hydroxyl radicals utilizing high-performance liquid chromatography (HPLC). Use to investigate the effect of EDTA on the Fenton reaction. Free Radic Res Commun. 1986;1(4):243–250. doi: 10.3109/10715768609051634. [DOI] [PubMed] [Google Scholar]
  4. Gutteridge J. M. Aspects to consider when detecting and measuring lipid peroxidation. Free Radic Res Commun. 1986;1(3):173–184. doi: 10.3109/10715768609083149. [DOI] [PubMed] [Google Scholar]
  5. Gutteridge J. M., Bannister J. V. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese. Biochem J. 1986 Feb 15;234(1):225–228. doi: 10.1042/bj2340225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutteridge J. M. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987 May 1;243(3):709–714. doi: 10.1042/bj2430709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gutteridge J. M. Reactivity of hydroxyl and hydroxyl-like radicals discriminated by release of thiobarbituric acid-reactive material from deoxy sugars, nucleosides and benzoate. Biochem J. 1984 Dec 15;224(3):761–767. doi: 10.1042/bj2240761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gutteridge J. M. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role. FEBS Lett. 1985 Jun 3;185(1):19–23. doi: 10.1016/0014-5793(85)80732-8. [DOI] [PubMed] [Google Scholar]
  9. Gutteridge J. M. Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydrates. FEBS Lett. 1981 Jun 15;128(2):343–346. doi: 10.1016/0014-5793(81)80113-5. [DOI] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M., Aruoma O. I. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem. 1987 Aug 15;165(1):215–219. doi: 10.1016/0003-2697(87)90222-3. [DOI] [PubMed] [Google Scholar]
  11. Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
  12. Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B., Gutteridge J. M. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med. 1985;8(2):89–193. doi: 10.1016/0098-2997(85)90001-9. [DOI] [PubMed] [Google Scholar]
  14. Halliwell B. Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates: is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett. 1978 Aug 15;92(2):321–326. doi: 10.1016/0014-5793(78)80779-0. [DOI] [PubMed] [Google Scholar]
  15. Higgins T. Novel chromogen for serum iron determinations. Clin Chem. 1981 Sep;27(9):1619–1620. [PubMed] [Google Scholar]
  16. Kanner J., German J. B., Kinsella J. E. Initiation of lipid peroxidation in biological systems. Crit Rev Food Sci Nutr. 1987;25(4):317–364. doi: 10.1080/10408398709527457. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi K., Hayashi K. One-electron reduction in oxyform of hemoproteins. J Biol Chem. 1981 Dec 10;256(23):12350–12354. [PubMed] [Google Scholar]
  18. Marton A., Sukosd-Rozlosnik N., Vertes A., Horvath I. The effect of EDTA-Fe(III) complexes with different chemical structure on the lipid peroxidation in brain microsomes. Biochem Biophys Res Commun. 1987 May 29;145(1):211–217. doi: 10.1016/0006-291x(87)91308-8. [DOI] [PubMed] [Google Scholar]
  19. McCord J. M., Day E. D., Jr Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Lett. 1978 Feb 1;86(1):139–142. doi: 10.1016/0014-5793(78)80116-1. [DOI] [PubMed] [Google Scholar]
  20. Melnyk D. L., Horwitz S. B., Peisach J. Redox potential of iron-bleomycin. Biochemistry. 1981 Sep 1;20(18):5327–5331. doi: 10.1021/bi00521a036. [DOI] [PubMed] [Google Scholar]
  21. Moorhouse C. P., Halliwell B., Grootveld M., Gutteridge J. M. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers. Biochim Biophys Acta. 1985 Dec 13;843(3):261–268. doi: 10.1016/0304-4165(85)90147-3. [DOI] [PubMed] [Google Scholar]
  22. Puppo A., Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological Fenton reagent? Biochem J. 1988 Jan 1;249(1):185–190. doi: 10.1042/bj2490185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rush J. D., Koppenol W. H. Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. Reactions with organic molecules and ferrocytochrome c. J Biol Chem. 1986 May 25;261(15):6730–6733. [PubMed] [Google Scholar]
  24. Sutton H. C., Vile G. F., Winterbourn C. C. Radical driven Fenton reactions--evidence from paraquat radical studies for production of tetravalent iron in the presence and absence of ethylenediaminetetraacetic acid. Arch Biochem Biophys. 1987 Aug 1;256(2):462–471. doi: 10.1016/0003-9861(87)90603-5. [DOI] [PubMed] [Google Scholar]
  25. Walling C., Partch R. E., Weil T. Kinetics of the decomposition of hydrogen peroxide catalyzed by ferric ethylenediaminetetraacetate complex. Proc Natl Acad Sci U S A. 1975 Jan;72(1):140–142. doi: 10.1073/pnas.72.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Winston G. W., Harvey W., Berl L., Cederbaum A. I. The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides. Biochem J. 1983 Nov 15;216(2):415–421. doi: 10.1042/bj2160415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winterbourn C. C. The ability of scavengers to distinguish OH. production in the iron-catalyzed Haber-Weiss reaction: comparison of four assays for OH. Free Radic Biol Med. 1987;3(1):33–39. doi: 10.1016/0891-5849(87)90037-2. [DOI] [PubMed] [Google Scholar]
  28. Wood P. M. The potential diagram for oxygen at pH 7. Biochem J. 1988 Jul 1;253(1):287–289. doi: 10.1042/bj2530287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yusa K., Shikama K. Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: involvement of ferryl intermediate. Biochemistry. 1987 Oct 20;26(21):6684–6688. doi: 10.1021/bi00395a018. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES