Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 1;269(3):615–622. doi: 10.1042/bj2690615

Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose.

A E Clark 1, G D Holman 1
PMCID: PMC1131631  PMID: 2390055

Abstract

The synthesis of 2-N-[4-(1'-azitrifluoroethyl)benzoyl]-1,3-bis-(D-mannos-4-++ +yloxy)-2- propylamine (ATB-BMPA) is described. This compound was used as an exofacial probe for the human erythrocyte glucose-transport system. A new method is described for directly estimating the affinity for exofacial ligands which bind to the erythrocyte glucose transporter. By using this equilibrium-binding method, the Ki for ATB-BMPA was found to be 338 +/- 37 microM at 0 degrees C and 368 +/- 59 microM at 20 degrees C. This was similar to the concentration of ATB-BMPA required to half-maximally inhibit D-galactose uptake (Ki = 297 +/- 53 microM). The new photoaffinity reagent labelled the glucose transporter in intact cells but, because of its improved selectivity, was also used to label the glucose transporter in isolated erythrocyte membranes. The ATB-BMPA-labelled glucose transporter was 80% immunoprecipitated by anti-(GLUT1-C-terminal peptide) antibody, which shows that the GLUT1 glucose transporter is the major isoform present in erythrocytes. The labelling of the glucose transporter at its exofacial site, and the adoption of an outward-facing conformation, renders the transport system resistant to thermolysin and trypsin treatment. Trypsin treatment of the unlabelled glucose transporter in erythrocyte membranes produced an 18 kDa fragment which was subsequently labelled by ATB-BMPA, but had low affinity for this exofacial ligand. This suggests that the trypsin-treated transporter adopts an inward-facing conformation. The ability of D-glucose to displace ATB-BMPA from the native transporter and from the 18 kDa trypsin fragment have been compared. The D-glucose concentration which was required to obtain half-maximal inhibition of ATB-BMPA labelling was 6-fold lower for the 18 kDa tryptic fragment.

Full text

PDF
615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. M., Lienhard G. E., Baldwin S. A. The monosaccharide transport system of the human erythrocyte. Orientation upon reconstitution. Biochim Biophys Acta. 1980 Jul;599(2):699–714. doi: 10.1016/0005-2736(80)90211-4. [DOI] [PubMed] [Google Scholar]
  2. Baldwin J. M., Lienhard G. E., Baldwin S. A. The monosaccharide transport system of the human erythrocyte. Orientation upon reconstitution. Biochim Biophys Acta. 1980 Jul;599(2):699–714. doi: 10.1016/0005-2736(80)90211-4. [DOI] [PubMed] [Google Scholar]
  3. Baldwin S. A., Henderson P. J. Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol. 1989;51:459–471. doi: 10.1146/annurev.ph.51.030189.002331. [DOI] [PubMed] [Google Scholar]
  4. Barnett J. E., Holman G. D., Munday K. A. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Biochem J. 1973 Feb;131(2):211–221. doi: 10.1042/bj1310211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bayley H., Knowles J. R. Photoaffinity labeling. Methods Enzymol. 1977;46:69–114. doi: 10.1016/s0076-6879(77)46012-9. [DOI] [PubMed] [Google Scholar]
  6. Birnbaum M. J., Haspel H. C., Rosen O. M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5784–5788. doi: 10.1073/pnas.83.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Birnbaum M. J. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell. 1989 Apr 21;57(2):305–315. doi: 10.1016/0092-8674(89)90968-9. [DOI] [PubMed] [Google Scholar]
  8. Brunner J., Richards F. M. Analysis of membranes photolabeled with lipid analogues. Reaction of phospholipids containing a disulfide group and a nitrene or carbene precursor with lipids and with gramicidin A. J Biol Chem. 1980 Apr 25;255(8):3319–3329. [PubMed] [Google Scholar]
  9. Cairns M. T., Alvarez J., Panico M., Gibbs A. F., Morris H. R., Chapman D., Baldwin S. A. Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection. Biochim Biophys Acta. 1987 Dec 11;905(2):295–310. doi: 10.1016/0005-2736(87)90458-5. [DOI] [PubMed] [Google Scholar]
  10. Carter-Su C., Pessin J. E., Mora R., Gitomer W., Czech M. P. Photoaffinity labeling of the human erythrocyte D-glucose transporter. J Biol Chem. 1982 May 25;257(10):5419–5425. [PubMed] [Google Scholar]
  11. Charron M. J., Brosius F. C., 3rd, Alper S. L., Lodish H. F. A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2535–2539. doi: 10.1073/pnas.86.8.2535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies A., Meeran K., Cairns M. T., Baldwin S. A. Peptide-specific antibodies as probes of the orientation of the glucose transporter in the human erythrocyte membrane. J Biol Chem. 1987 Jul 5;262(19):9347–9352. [PubMed] [Google Scholar]
  13. Fukumoto H., Kayano T., Buse J. B., Edwards Y., Pilch P. F., Bell G. I., Seino S. Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J Biol Chem. 1989 May 15;264(14):7776–7779. [PubMed] [Google Scholar]
  14. Gibbs A. F., Chapman D., Baldwin S. A. Proteolytic dissection as a probe of conformational changes in the human erythrocyte glucose transport protein. Biochem J. 1988 Dec 1;256(2):421–427. doi: 10.1042/bj2560421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Helgerson A. L., Carruthers A. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Biochemistry. 1989 May 30;28(11):4580–4594. doi: 10.1021/bi00437a012. [DOI] [PubMed] [Google Scholar]
  16. Helgerson A. L., Carruthers A. Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier. J Biol Chem. 1987 Apr 25;262(12):5464–5475. [PubMed] [Google Scholar]
  17. Hildreth J. E. N-D-Gluco-N-methylalkanamide compounds, a new class of non-ionic detergents for membrane biochemistry. Biochem J. 1982 Nov 1;207(2):363–366. doi: 10.1042/bj2070363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holman G. D., Busza A. L., Pierce E. J., Rees W. D. Evidence for negative cooperativity in human erythrocyte sugar transport. Biochim Biophys Acta. 1981 Dec 21;649(3):503–514. doi: 10.1016/0005-2736(81)90153-x. [DOI] [PubMed] [Google Scholar]
  19. Holman G. D., Karim A. R., Karim B. Photolabeling of erythrocyte and adipocyte hexose transporters using a benzophenone derivative of bis(D-mannose). Biochim Biophys Acta. 1988 Dec 8;946(1):75–84. doi: 10.1016/0005-2736(88)90459-2. [DOI] [PubMed] [Google Scholar]
  20. Holman G. D., Parkar B. A., Midgley P. J. Exofacial photoaffinity labelling of the human erythrocyte sugar transporter. Biochim Biophys Acta. 1986 Feb 13;855(1):115–126. doi: 10.1016/0005-2736(86)90195-1. [DOI] [PubMed] [Google Scholar]
  21. Holman G. D., Rees W. D. Photolabelling of the hexose transporter at external and internal sites: fragmentation patterns and evidence for a conformational change. Biochim Biophys Acta. 1987 Mar 12;897(3):395–405. doi: 10.1016/0005-2736(87)90437-8. [DOI] [PubMed] [Google Scholar]
  22. James D. E., Brown R., Navarro J., Pilch P. F. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature. 1988 May 12;333(6169):183–185. doi: 10.1038/333183a0. [DOI] [PubMed] [Google Scholar]
  23. Kaestner K. H., Christy R. J., McLenithan J. C., Braiterman L. T., Cornelius P., Pekala P. H., Lane M. D. Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes. Proc Natl Acad Sci U S A. 1989 May;86(9):3150–3154. doi: 10.1073/pnas.86.9.3150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Karim A. R., Rees W. D., Holman G. D. Binding of cytochalasin B to trypsin and thermolysin fragments of the human erythrocyte hexose transporter. Biochim Biophys Acta. 1987 Sep 3;902(3):402–405. doi: 10.1016/0005-2736(87)90208-2. [DOI] [PubMed] [Google Scholar]
  25. Kayano T., Fukumoto H., Eddy R. L., Fan Y. S., Byers M. G., Shows T. B., Bell G. I. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J Biol Chem. 1988 Oct 25;263(30):15245–15248. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lowe A. G., Walmsley A. R. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta. 1986 May 28;857(2):146–154. doi: 10.1016/0005-2736(86)90342-1. [DOI] [PubMed] [Google Scholar]
  28. May J. M. Inhibition of hexose transport in the human erythrocyte by 5, 5'-dithiobis(2-nitrobenzoic acid): role of an exofacial carrier sulfhydryl group. J Membr Biol. 1989 Jun;108(3):227–233. doi: 10.1007/BF01871737. [DOI] [PubMed] [Google Scholar]
  29. Midgley P. J., Parkar B. A., Holman G. D. A new class of sugar analogues for use in the investigation of sugar transport. Biochim Biophys Acta. 1985 Jan 10;812(1):33–41. doi: 10.1016/0005-2736(85)90518-8. [DOI] [PubMed] [Google Scholar]
  30. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  31. Naftalin R. J. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism. Biochim Biophys Acta. 1988 Dec 22;946(2):431–438. doi: 10.1016/0005-2736(88)90420-8. [DOI] [PubMed] [Google Scholar]
  32. Oka Y., Asano T., Shibasaki Y., Kasuga M., Kanazawa Y., Takaku F. Studies with antipeptide antibody suggest the presence of at least two types of glucose transporter in rat brain and adipocyte. J Biol Chem. 1988 Sep 15;263(26):13432–13439. [PubMed] [Google Scholar]
  33. Schroer D. W., Frost S. C., Kohanski R. A., Lane M. D., Lienhard G. E. Identification and partial purification of the insulin-responsive glucose transporter from 3T3-L1 adipocytes. Biochim Biophys Acta. 1986 Mar 14;885(3):317–326. doi: 10.1016/0167-4889(86)90247-8. [DOI] [PubMed] [Google Scholar]
  34. Shanahan M. F. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem. 1982 Jul 10;257(13):7290–7293. [PubMed] [Google Scholar]
  35. Thorens B., Sarkar H. K., Kaback H. R., Lodish H. F. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 1988 Oct 21;55(2):281–290. doi: 10.1016/0092-8674(88)90051-7. [DOI] [PubMed] [Google Scholar]
  36. Wadzinski B. E., Shanahan M. F., Ruoho A. E. Derivatization of the human erythrocyte glucose transporter using a novel forskolin photoaffinity label. J Biol Chem. 1987 Dec 25;262(36):17683–17689. [PubMed] [Google Scholar]
  37. Wheeler T. J. Kinetics of glucose transport in human erythrocytes: zero-trans efflux and infinite-trans efflux at 0 degree C. Biochim Biophys Acta. 1986 Nov 17;862(2):387–398. doi: 10.1016/0005-2736(86)90242-7. [DOI] [PubMed] [Google Scholar]
  38. Whitesell R. R., Regen D. M., Beth A. H., Pelletier D. K., Abumrad N. A. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Biochemistry. 1989 Jun 27;28(13):5618–5625. doi: 10.1021/bi00439a042. [DOI] [PubMed] [Google Scholar]
  39. Zorzano A., Wilkinson W., Kotliar N., Thoidis G., Wadzinkski B. E., Ruoho A. E., Pilch P. F. Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem. 1989 Jul 25;264(21):12358–12363. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES