Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 1;269(3):651–658. doi: 10.1042/bj2690651

Abortive intermediates in transcription by wheat-germ RNA polymerase II. Dynamic aspects of enzyme/template interactions in selection of the enzyme synthetic mode.

L de Mercoyrol 1, J M Soulié 1, C Job 1, D Job 1, C Dussert 1, J Palmari 1, M Rasigni 1, G Rasigni 1
PMCID: PMC1131637  PMID: 2390060

Abstract

At constant enzyme concentration and with the full set of nucleotide substrates dictated by template sequence, the chain-length distribution of polymeric product varies with template concentration in reactions catalysed by wheat-germ RNA polymerase II. Under the same conditions, but in the presence of a single ribonucleoside triphosphate, the rate of condensation of the triphosphate substrate to a dinucleotide primer also exhibits a complex dependence with the template concentration. This effect is observed using poly[d(A-T)] as a template. For both reactions there are two extreme types of behaviour in each of which transcription appears to involve a single enzyme synthetic mode, characterized by either a high (at low template concentration) or a low (at high template concentration) probability of releasing the transcripts. A strong correlation is found between these two pathways, such that conditions favouring the abortive release of trinucleotide products in the single-step addition reaction are associated with the synthesis of short-length RNA species in productive elongation, and reciprocally. A model previously developed by Papanicolaou, Lecomte & Ninio [(1986) J. Mol. Biol. 189, 435-448] to account for the kinetics of polymerization/excision ratios with Escherichia coli DNA polymerase I, and by Job, Soulié, Job & Shire [(1988) J. Theor. Biol. 134, 273-289] for kinetics of RNA-chain elongation by wheat-germ RNA polymerase II provides an explanation for the observed behaviour with the plant transcriptase. The basic requirement of this model is a slow equilibrium between two states of the polymerization complex with distinct probabilities of releasing the product. In the presence of Mn2+, and under conditions allowing the synthesis of poly[r(A-U)], one of these states is involved in the formation of oligonucleotides shorter than 15 bases, whereas the other catalyses the polymerization of chains longer than 40 bases.

Full text

PDF
651

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baty D., Knibiehler M., Verheij H., Pattus F., Shire D., Bernadac A., Lazdunski C. Site-directed mutagenesis of the COOH-terminal region of colicin A: effect on secretion and voltage-dependent channel activity. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1152–1156. doi: 10.1073/pnas.84.5.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cai H., Luse D. S. Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J Biol Chem. 1987 Jan 5;262(1):298–304. [PubMed] [Google Scholar]
  3. Carpousis A. J., Gralla J. D. Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry. 1980 Jul 8;19(14):3245–3253. doi: 10.1021/bi00555a023. [DOI] [PubMed] [Google Scholar]
  4. Carpousis A. J., Gralla J. D. Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation. J Mol Biol. 1985 May 25;183(2):165–177. doi: 10.1016/0022-2836(85)90210-4. [DOI] [PubMed] [Google Scholar]
  5. Chandler D. W., Gralla J. Specific binding and protection of form II SV40 deoxyribonucleic acid by ribonucleic acid polymerase II from wheat germ. Biochemistry. 1980 Apr 15;19(8):1604–1612. doi: 10.1021/bi00549a012. [DOI] [PubMed] [Google Scholar]
  6. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  7. Coppola J. A., Luse D. S. Purification and characterization of ternary complexes containing accurately initiated RNA polymerase II and less than 20 nucleotides of RNA. J Mol Biol. 1984 Sep 15;178(2):415–437. doi: 10.1016/0022-2836(84)90151-7. [DOI] [PubMed] [Google Scholar]
  8. De Mercoyrol L., Job C., Job D. Effect of Sarkosyl and heparin on single-step addition reactions catalysed by wheat-germ RNA polymerase II--poly[d(A-T)]transcription complexes. Biochem J. 1989 Jun 15;260(3):795–801. doi: 10.1042/bj2600795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietrich J., Teissere M., Job C., Job D. Effect of salts on abortive and productive elongation catalysed by wheat germ RNA polymerase II. Nucleic Acids Res. 1986 Feb 25;14(4):1583–1597. doi: 10.1093/nar/14.4.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dietrich J., Teissere M., Job C., Job D. Poly(dAT) dependent trinucleotide synthesis catalysed by wheat germ RNA polymerase II. Effects of nucleotide substrates and cordycepin triphosphate. Nucleic Acids Res. 1985 Sep 11;13(17):6155–6170. doi: 10.1093/nar/13.17.6155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Durand R., Job C., Teissère M., Job D. Non-processive transcription of poly[d(A-T)] by wheat germ RNA polymerase II. FEBS Lett. 1982 Dec 27;150(2):477–481. doi: 10.1016/0014-5793(82)80793-x. [DOI] [PubMed] [Google Scholar]
  12. Jendrisak J. J., Burgess R. R. A new method for the large-scale purification of wheat germ DNA-dependent RNA polymerase II. Biochemistry. 1975 Oct 21;14(21):4639–4645. doi: 10.1021/bi00692a012. [DOI] [PubMed] [Google Scholar]
  13. Jendrisak J., Guilfoyle T. J. Eukaryotic RNA polymerase: comparative subunit structures, immunological properties, and alpha-amanitin sensitivities of the class II enzymes from higher plants. Biochemistry. 1978 Apr 4;17(7):1322–1327. doi: 10.1021/bi00600a029. [DOI] [PubMed] [Google Scholar]
  14. Job C., De Mercoyrol L., Job D. A slow kinetic transient in RNA synthesis catalysed by wheat-germ RNA polymerase II. Biochem J. 1988 Jul 1;253(1):281–285. doi: 10.1042/bj2530281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Job C., Dietrich J., Shire D., Teissere M., Job D. Effect of low nucleotide concentrations on abortive elongation catalysed by wheat-germ RNA polymerase II. Biochem J. 1987 May 15;244(1):151–157. doi: 10.1042/bj2440151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Job D., Marmillot P., Job C., Jovin T. M. Transcription of left-handed Z-DNA templates: increased rate of single-step addition reactions catalyzed by wheat germ RNA polymerase II. Biochemistry. 1988 Aug 23;27(17):6371–6378. doi: 10.1021/bi00417a027. [DOI] [PubMed] [Google Scholar]
  17. Job D., Soulié J. M., Job C., Shire D. Potential memory and hysteretic effects in transcription. J Theor Biol. 1988 Oct 7;134(3):273–289. doi: 10.1016/s0022-5193(88)80059-6. [DOI] [PubMed] [Google Scholar]
  18. Levin J. R., Krummel B., Chamberlin M. J. Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base. J Mol Biol. 1987 Jul 5;196(1):85–100. doi: 10.1016/0022-2836(87)90512-2. [DOI] [PubMed] [Google Scholar]
  19. Luse D. S., Jacob G. A. Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter. J Biol Chem. 1987 Nov 5;262(31):14990–14997. [PubMed] [Google Scholar]
  20. Luse D. S., Kochel T., Kuempel E. D., Coppola J. A., Cai H. Transcription initiation by RNA polymerase II in vitro. At least two nucleotides must be added to form a stable ternary complex. J Biol Chem. 1987 Jan 5;262(1):289–297. [PubMed] [Google Scholar]
  21. McClure W. R., Chow Y. The kinetics and processivity of nucleic acid polymerases. Methods Enzymol. 1980;64:277–297. doi: 10.1016/s0076-6879(80)64013-0. [DOI] [PubMed] [Google Scholar]
  22. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  23. NISHIMURA S., JACOB T. M., KHORANA H. G. SYNTHETIC DEOXYRIBOPOLYNUCLEOTIDES AS TEMPLATES FOR RIBONUCLEIC ACID POLYMERASE: THE FORMATION AND CHARACTERIZATION OF A RIBOPOLYNUCLEOTIDE WITH A REPEATING TRINUCLEOTIDE SEQUENCE. Proc Natl Acad Sci U S A. 1964 Dec;52:1494–1501. doi: 10.1073/pnas.52.6.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neet K. E., Ainslie G. R., Jr Hysteretic enzymes. Methods Enzymol. 1980;64:192–226. doi: 10.1016/s0076-6879(80)64010-5. [DOI] [PubMed] [Google Scholar]
  25. Ninio J. Fine tuning of ribosomal accuracy. FEBS Lett. 1986 Feb 3;196(1):1–4. doi: 10.1016/0014-5793(86)80202-2. [DOI] [PubMed] [Google Scholar]
  26. Oen H., Wu C. W. DNA-dependent single-step addition reactions catalyzed by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1778–1782. doi: 10.1073/pnas.75.4.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Papanicolaou C., Lecomte P., Ninio J. Mnemonic aspects of Escherichia coli DNA polymerase I. Interaction with one template influences the next interaction with another template. J Mol Biol. 1986 Jun 5;189(3):435–448. doi: 10.1016/0022-2836(86)90315-3. [DOI] [PubMed] [Google Scholar]
  28. Pays E. Transcription of rat liver deoxyribonucleic acid in vitro at low ionic strength. Biochem J. 1978 Oct 1;175(1):1–13. doi: 10.1042/bj1750001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rasigni G., Palmari J., Rasigni M., Varnier F., Palmari J. P., Marty F., Llebaria A. Quantitative characterization of a biological membrane by means of its spatial autocovariance. Biophys J. 1985 Mar;47(3):431–436. doi: 10.1016/S0006-3495(85)83934-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shimamoto N., Wu C. W. Mechanism of ribonucleic acid chain initiation. 2. A real time analysis of initiation by the rapid kinetic technique. Biochemistry. 1980 Mar 4;19(5):849–856. doi: 10.1021/bi00546a004. [DOI] [PubMed] [Google Scholar]
  31. Sluder A. E., Price D. H., Greenleaf A. L. Elongation by Drosophila RNA polymerase II. Transcription of 3'-extended DNA templates. J Biol Chem. 1988 Jul 15;263(20):9917–9925. [PubMed] [Google Scholar]
  32. Telesnitsky A. P., Chamberlin M. J. Sequences linked to prokaryotic promoters can affect the efficiency of downstream termination sites. J Mol Biol. 1989 Jan 20;205(2):315–330. doi: 10.1016/0022-2836(89)90343-4. [DOI] [PubMed] [Google Scholar]
  33. de Mercoyrol L., Job C., Job D. Studies on the inhibition by alpha-amanitin of single-step addition reactions and productive RNA synthesis catalysed by wheat-germ RNA polymerase II. Biochem J. 1989 Feb 15;258(1):165–169. doi: 10.1042/bj2580165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. von Hippel P. H., Bear D. G., Morgan W. D., McSwiggen J. A. Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem. 1984;53:389–446. doi: 10.1146/annurev.bi.53.070184.002133. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES