Abstract
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Christensen E., Grønn M., Hagve T. A., Kase B. F., Christophersen B. O. Adrenoleukodystrophy. The chain shortening of erucic acid (22:1(n-9)) and adrenic acid (22:4(n-6)) is deficient in neonatal adrenoleukodystrophy and normal in X-linked adrenoleukodistrophy skin fibroblasts. Biochim Biophys Acta. 1989 Mar 14;1002(1):79–83. doi: 10.1016/0005-2760(89)90067-2. [DOI] [PubMed] [Google Scholar]
- Christensen E., Hagve T. A., Christophersen B. O. Mitochondrial and peroxisomal oxidation of arachidonic and eicosapentaenoic acid studied in isolated liver cells. Biochim Biophys Acta. 1986 Dec 5;879(3):313–321. doi: 10.1016/0005-2760(86)90220-1. [DOI] [PubMed] [Google Scholar]
- Danpure C. J., Jennings P. R. Peroxisomal alanine:glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986 May 26;201(1):20–24. doi: 10.1016/0014-5793(86)80563-4. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Goldfischer S., Collins J., Rapin I., Neumann P., Neglia W., Spiro A. J., Ishii T., Roels F., Vamecq J., Van Hoof F. Pseudo-Zellweger syndrome: deficiencies in several peroxisomal oxidative activities. J Pediatr. 1986 Jan;108(1):25–32. doi: 10.1016/s0022-3476(86)80764-8. [DOI] [PubMed] [Google Scholar]
- Igarashi M., Schaumburg H. H., Powers J., Kishmoto Y., Kolodny E., Suzuki K. Fatty acid abnormality in adrenoleukodystrophy. J Neurochem. 1976 Apr;26(4):851–860. doi: 10.1111/j.1471-4159.1976.tb04462.x. [DOI] [PubMed] [Google Scholar]
- Inomata M., Takaku F., Nagai Y., Saito M. Assay for polyunsaturated fatty acids by argentation--thin-layer chromatography using commercial thin-layer plates. Anal Biochem. 1982 Sep 1;125(1):197–202. doi: 10.1016/0003-2697(82)90402-x. [DOI] [PubMed] [Google Scholar]
- Kawamura N., Kishimoto Y. Characterization of water-soluble products of palmitic acid beta-oxidation by a rat brain preparation. J Neurochem. 1981 May;36(5):1786–1791. doi: 10.1111/j.1471-4159.1981.tb00432.x. [DOI] [PubMed] [Google Scholar]
- Kondrup J., Lazarow P. B. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta. 1985 Jun 14;835(1):147–153. doi: 10.1016/0005-2760(85)90041-4. [DOI] [PubMed] [Google Scholar]
- Lazo O., Contreras M., Hashmi M., Stanley W., Irazu C., Singh I. Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7647–7651. doi: 10.1073/pnas.85.20.7647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moser H. W., Moser A. B., Frayer K. K., Chen W., Schulman J. D., O'Neill B. P., Kishimoto Y. Adrenoleukodystrophy: increased plasma content of saturated very long chain fatty acids. Neurology. 1981 Oct;31(10):1241–1249. doi: 10.1212/wnl.31.10.1241. [DOI] [PubMed] [Google Scholar]
- Moser H. W., Moser A. B., Kawamura N., Murphy J., Suzuki K., Schaumburg H., Kishimoto Y. Adrenoleukodystrophy: elevated C26 fatty acid in cultured skin fibroblasts. Ann Neurol. 1980 Jun;7(6):542–549. doi: 10.1002/ana.410070607. [DOI] [PubMed] [Google Scholar]
- Moser H. W., Moser A. E., Singh I., O'Neill B. P. Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis, and therapy. Ann Neurol. 1984 Dec;16(6):628–641. doi: 10.1002/ana.410160603. [DOI] [PubMed] [Google Scholar]
- Poll-The B. T., Roels F., Ogier H., Scotto J., Vamecq J., Schutgens R. B., Wanders R. J., van Roermund C. W., van Wijland M. J., Schram A. W. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy). Am J Hum Genet. 1988 Mar;42(3):422–434. [PMC free article] [PubMed] [Google Scholar]
- Poulos A. Diagnosis of Refsum's disease using [1-14C]phytanic acid as substrate. Clin Genet. 1981 Oct;20(4):247–253. doi: 10.1111/j.1399-0004.1981.tb01029.x. [DOI] [PubMed] [Google Scholar]
- Poulos A. Lipid metabolism in Zellweger's syndrome. Prog Lipid Res. 1989;28(1):35–51. doi: 10.1016/0163-7827(89)90006-4. [DOI] [PubMed] [Google Scholar]
- Poulos A., Sharp P., Fellenberg A. J., Danks D. M. Cerebro-hepato-renal (Zellweger) syndrome, adrenoleukodystrophy, and Refsum's disease: plasma changes and skin fibroblast phytanic acid oxidase. Hum Genet. 1985;70(2):172–177. doi: 10.1007/BF00273077. [DOI] [PubMed] [Google Scholar]
- Poulos A., Sharp P., Johnson D. Plasma polyenoic very-long-chain fatty acids in peroxisomal disease: biochemical discrimination of Zellweger's syndrome from other phenotypes. Neurology. 1989 Jan;39(1):44–47. doi: 10.1212/wnl.39.1.44. [DOI] [PubMed] [Google Scholar]
- Poulos A., Singh H., Paton B., Sharp P., Derwas N. Accumulation and defective beta-oxidation of very long chain fatty acids in Zellweger's syndrome, adrenoleukodystrophy and Refsum's disease variants. Clin Genet. 1986 May;29(5):397–408. doi: 10.1111/j.1399-0004.1986.tb00511.x. [DOI] [PubMed] [Google Scholar]
- Schram A. W., Goldfischer S., van Roermund C. W., Brouwer-Kelder E. M., Collins J., Hashimoto T., Heymans H. S., van den Bosch H., Schutgens R. B., Tager J. M. Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2494–2496. doi: 10.1073/pnas.84.8.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh H., Derwas N., Poulos A. Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys. 1987 May 1;254(2):526–533. doi: 10.1016/0003-9861(87)90133-0. [DOI] [PubMed] [Google Scholar]
- Singh H., Poulos A. A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts. Arch Biochem Biophys. 1986 Oct;250(1):171–179. doi: 10.1016/0003-9861(86)90714-9. [DOI] [PubMed] [Google Scholar]
- Street J. M., Johnson D. W., Singh H., Poulos A. Metabolism of saturated and polyunsaturated fatty acids by normal and Zellweger syndrome skin fibroblasts. Biochem J. 1989 Jun 15;260(3):647–655. doi: 10.1042/bj2600647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Y., Orii T., Mori M., Tatibana M., Hashimoto T. Deficient activities and proteins of peroxisomal beta-oxidation enzymes in infants with Zellweger syndrome. Clin Chim Acta. 1986 Apr 30;156(2):191–196. doi: 10.1016/0009-8981(86)90152-x. [DOI] [PubMed] [Google Scholar]
- Tager J. M., Van der Beek W. A., Wanders R. J., Hashimoto T., Heymans H. S., Van den Bosch H., Schutgens R. B., Schram A. W. Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1269–1275. doi: 10.1016/0006-291x(85)90322-5. [DOI] [PubMed] [Google Scholar]
- Tsuji S., Ohno T., Miyatake T., Suzuki A., Yamakawa T. Fatty acid elongation activity in fibroblasts from patients with adrenoleukodystrophy (ALD). J Biochem. 1984 Oct;96(4):1241–1247. doi: 10.1093/oxfordjournals.jbchem.a134942. [DOI] [PubMed] [Google Scholar]
- Walsh P. J. Adrenoleukodystrophy. Report of two cases with relapsing and remitting courses. Arch Neurol. 1980 Jul;37(7):448–450. doi: 10.1001/archneur.1980.00500560078013. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., Heymans H. S., Schutgens R. B., Barth P. G., van den Bosch H., Tager J. M. Peroxisomal disorders in neurology. J Neurol Sci. 1988 Dec;88(1-3):1–39. doi: 10.1016/0022-510x(88)90203-1. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., van Roermund C. W., van Wijland M. J., Schutgens R. B., van den Bosch H., Schram A. W., Tager J. M. Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem Biophys Res Commun. 1988 Jun 16;153(2):618–624. doi: 10.1016/s0006-291x(88)81140-9. [DOI] [PubMed] [Google Scholar]


