Abstract
Seven components of the tetrameric haemoglobin (Hbu) from Urechis caupo were separated by preparative isoelectric focusing and characterized by their absorption spectra and pI values. The helix content and Soret delta epsilon values are reported for several of the components. Temperature-jump O2-binding kinetics of the major components of Hbu show biphasic behaviour, with the majority species having kon = 1.57 x 10(9) mol-1.s-1 and koff = 3.32 x 10(4) s-1. The Fourier-transform i.r. spectrum of pooled Hbu(II)-CO displays a stretching frequency of 1942 cm-1. E.s.r. of Hbu(II)-NO demonstrates evidence of proximal strain similar to that encountered in T-state human haemoglobin. CO-driven reduction of U. caupo methaemoglobin, Hbu(III) and U. caupo metmyoglobin [Mbu(III)] shows much higher rates relative to haemoglobins and myoglobins known to possess a distal histidine residue. Nitrosyl auto-reduction kinetics of Hbu(III)-NO and Mbu(III)-NO are examined. The equilibrium binding constants of several ligands are reported for both Hbu and Mbu, and together with the above kinetic data suggest differences in haem pocket environments between Hbu and Mbu. Reaction of Hbu with 2-chloromercuri-4,6-dinitrophenol demonstrates the presence of one reactive thiol group per globin chain. lambda max. values and the respective molar absorption coefficients for selected ligand-bound states are reported for the major component of Hbu and for Mbu. The majority haem orientation in U. caupo haemoglobin is identical with that of human haemoglobin.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Addison A. W., Stephanos J. J. Nitrosyliron(III) hemoglobin: autoreduction and spectroscopy. Biochemistry. 1986 Jul 15;25(14):4104–4113. doi: 10.1021/bi00362a018. [DOI] [PubMed] [Google Scholar]
- Ambler R. P., Bartsch R. G., Daniel M., Kamen M. D., McLellan L., Meyer T. E., Van Beeumen J. Amino acid sequences of bacterial cytochromes c' and c-556. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6854–6857. doi: 10.1073/pnas.78.11.6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aojula H. S., Wilson M. T., Moore G. R., Williamson D. J. 1H-n.m.r. and c.d. studies of haem orientational disorder in sperm-whale myoglobin and human haemoglobin. Biochem J. 1988 Mar 15;250(3):853–858. doi: 10.1042/bj2500853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Appleby C. A. Properties of leghaemoglobin in vivo, and its isolation as ferrous oxyleghaemoglobin. Biochim Biophys Acta. 1969;188(2):222–229. doi: 10.1016/0005-2795(69)90069-5. [DOI] [PubMed] [Google Scholar]
- Bickar D., Bonaventura C., Bonaventura J. Carbon monoxide-driven reduction of ferric heme and heme proteins. J Biol Chem. 1984 Sep 10;259(17):10777–10783. [PubMed] [Google Scholar]
- Bolognesi M., Coda A., Gatti G., Ascenzi P., Brunori M. Crystal structure of ferric Aplysia limacina myoglobin at 2 X 0 A resolution. J Mol Biol. 1985 May 5;183(1):113–115. doi: 10.1016/0022-2836(85)90285-2. [DOI] [PubMed] [Google Scholar]
- Bolognesi M., Onesti S., Gatti G., Coda A., Ascenzi P., Brunori M. Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution. J Mol Biol. 1989 Feb 5;205(3):529–544. doi: 10.1016/0022-2836(89)90224-6. [DOI] [PubMed] [Google Scholar]
- Braunitzer G., Jelkmann W., Stangl A., Schrank B., Krombach C. Hämoglobine, XLVIII: Die primäre Struktur des Hämoglobins des indischen Elefanten (Elephas maximus, Proboscidea): beta 2 = Asn. Hoppe Seylers Z Physiol Chem. 1982 Jul;363(7):683–691. [PubMed] [Google Scholar]
- Brill A. S., Williams R. J. The absorption spectra, magnetic moments and the binding of iron in some haemoproteins. Biochem J. 1961 Feb;78(2):246–253. doi: 10.1042/bj0780246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caughey W. S. Carbon monoxide bonding in hemeproteins. Ann N Y Acad Sci. 1970 Oct 5;174(1):148–153. doi: 10.1111/j.1749-6632.1970.tb49781.x. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T., Martinez H. M. Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry. 1972 Oct 24;11(22):4120–4131. doi: 10.1021/bi00772a015. [DOI] [PubMed] [Google Scholar]
- DiFeo T. J., Addison A. W. Haem-binding-site heterogeneity and haem Cotton effects of Glycera dibranchiata monomeric haemoglobins. Biochem J. 1989 Jun 15;260(3):863–871. doi: 10.1042/bj2600863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eaton W. A., Hochstrasser R. M. Electronic spectrum of single crystals of ferricytochrome-c. J Chem Phys. 1967 Apr 1;46(7):2533–2539. doi: 10.1063/1.1841081. [DOI] [PubMed] [Google Scholar]
- Eaton W. A., Hochstrasser R. M. Single-crystal spectra of ferrimyoglobin complexes in polarized light. J Chem Phys. 1968 Aug 1;49(3):985–995. doi: 10.1063/1.1670263. [DOI] [PubMed] [Google Scholar]
- Emptage M. H., Xavier A. V., Wood J. M., Alsaadi B. M., Moore G. R., Pitt R. C., Williams R. J., Ambler R. P., Bartsch R. G. Nuclear magnetic resonance studies of Rhodospirillum rubrum cytochrome c'. Biochemistry. 1981 Jan 6;20(1):58–64. doi: 10.1021/bi00504a010. [DOI] [PubMed] [Google Scholar]
- Fosmire G. J., Brown W. D. Yellowfin tuna (Thunnus albacares) myoglobin: characterization and comparative stability. Comp Biochem Physiol B. 1976;55(2):293–299. doi: 10.1016/0305-0491(76)90244-3. [DOI] [PubMed] [Google Scholar]
- Garey J. R., Riggs A. F. Structure and function of hemoglobin from Urechis caupo. Arch Biochem Biophys. 1984 Jan;228(1):320–331. doi: 10.1016/0003-9861(84)90073-0. [DOI] [PubMed] [Google Scholar]
- Garey J. R., Riggs A. F. The hemoglobin of Urechis caupo. The cDNA-derived amino acid sequence. J Biol Chem. 1986 Dec 15;261(35):16446–16450. [PubMed] [Google Scholar]
- Giacometti G. M., Ascenzi P., Bolognesi M., Brunori M. Reactivity of ferric Aplysia myoglobin towards anionic ligands in the acidic region. Proposal for a structural model. J Mol Biol. 1981 Mar 5;146(3):363–374. doi: 10.1016/0022-2836(81)90393-4. [DOI] [PubMed] [Google Scholar]
- Giacometti G. M., Ascenzi P., Brunori M., Rigatti G., Giacometti G., Bolognesi M. Absence of water at the sixth co-ordination site in ferric Aplysia myoglobin. J Mol Biol. 1981 Sep 15;151(2):315–319. doi: 10.1016/0022-2836(81)90518-0. [DOI] [PubMed] [Google Scholar]
- Giacometti G. M., Da Ros A., Antonini E., Brunori M. Equilibrium and kinetics of the reaction of Aplysia myoglobin with azide. Biochemistry. 1975 Apr 22;14(8):1584–1588. doi: 10.1021/bi00679a006. [DOI] [PubMed] [Google Scholar]
- Harrington J. P., Pandolfelli E. R., Herskovits T. T. Solution studies on heme proteins: circular dichroism and optical rotation of Lumbricus terrestris and Glycera dibranchiata hemoglobin. Biochim Biophys Acta. 1973 Nov 11;328(1):61–73. doi: 10.1016/0005-2795(73)90330-9. [DOI] [PubMed] [Google Scholar]
- Imamura T., Baldwin T. O., Riggs A. The amino acid sequence of the monomeric hemoglobin component from the bloodworm, Glyat liver. J Biol Chem. 1972 May 10;247(9):2785–2797. [PubMed] [Google Scholar]
- Jameson D. M., Gratton E., Weber G., Alpert B. Oxygen distribution and migration within Mbdes Fe and Hbdes Fe. Multifrequency phase and modulation fluorometry study. Biophys J. 1984 Apr;45(4):795–803. doi: 10.1016/S0006-3495(84)84224-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. A., Olson J. S., Phillips G. N., Jr Structure of myoglobin-ethyl isocyanide. Histidine as a swinging door for ligand entry. J Mol Biol. 1989 May 20;207(2):459–463. doi: 10.1016/0022-2836(89)90269-6. [DOI] [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Relationship between haemoglobin and erythrocruorin. Nature. 1951 Aug 18;168(4268):266–269. doi: 10.1038/168266a0. [DOI] [PubMed] [Google Scholar]
- Kerr E. A., Yu N. T., Bartnicki D. E., Mizukami H. Resonance Raman studies of CO and O2 binding to elephant myoglobin (distal His(E7)----Gln). J Biol Chem. 1985 Jul 15;260(14):8360–8365. [PubMed] [Google Scholar]
- Kolatkar P. R., Meador W. E., Stanfield R. L., Hackert M. L. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo. J Biol Chem. 1988 Mar 5;263(7):3462–3465. [PubMed] [Google Scholar]
- Krishnamoorthi R., La Mar G. N., Mizukami H., Romero A. A 1H NMR comparison of the met-cyano complexes of elephant and sperm whale myoglobin. Assignment of labile proton resonances in the heme cavity and determination of the distal glutamine orientation from relaxation data. J Biol Chem. 1984 Jul 25;259(14):8826–8831. [PubMed] [Google Scholar]
- La Mar G. N., Budd D. L., Viscio D. B., Smith K. M., Langry K. C. Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5755–5759. doi: 10.1073/pnas.75.12.5755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LaGow J., Parkhurst L. J. Kinetics of carbon monoxide and oxygen binding for eight electrophoretic components of sperm-whale myoglobin. Biochemistry. 1972 Nov 21;11(24):4520–4525. doi: 10.1021/bi00774a014. [DOI] [PubMed] [Google Scholar]
- Ladner R. C., Heidner E. J., Perutz M. F. The structure of horse methaemoglobin at 2-0 A resolution. J Mol Biol. 1977 Aug 15;114(3):385–414. doi: 10.1016/0022-2836(77)90256-x. [DOI] [PubMed] [Google Scholar]
- Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mabbutt B. C., Wright P. E. Assignment of heme and distal amino acid resonances in the 1H-NMR spectra of the carbon monoxide and oxygen complexes of sperm whale myoglobin. Biochim Biophys Acta. 1985 Nov 29;832(2):175–185. doi: 10.1016/0167-4838(85)90329-2. [DOI] [PubMed] [Google Scholar]
- Maltempo M. M. The spin 3/2 state and quantum spin mixtures in haem proteins. Q Rev Biophys. 1976 May;9(2):181–215. doi: 10.1017/s0033583500002407. [DOI] [PubMed] [Google Scholar]
- Maltempo M. M. Visible absorption spectra of quantum mixed-spin ferric heme proteins. Biochim Biophys Acta. 1976 Jun 15;434(2):513–518. doi: 10.1016/0005-2795(76)90243-9. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Mims M. P., Porras A. G., Olson J. S., Noble R. W., Peterson J. A. Ligand binding to heme proteins. An evaluation of distal effects. J Biol Chem. 1983 Dec 10;258(23):14219–14232. [PubMed] [Google Scholar]
- Moore G. R., McClune G. J., Clayden N. J., Williams R. J., Alsaadi B. M., Angström J., Ambler R. P., van Beeumen J., Tempst P., Bartsch R. G. Metal coordination centres of class II cytochromes c. Eur J Biochem. 1982 Mar;123(1):73–80. doi: 10.1111/j.1432-1033.1982.tb06500.x. [DOI] [PubMed] [Google Scholar]
- Nagai K., Welborn C., Dolphin D., Kitagawa T. Resonance Raman evidence for cleavage of the Fe-N epsilon(His-F8) bond in the alpha subunit of the T-structure nitrosylhemoglobin. Biochemistry. 1980 Oct 14;19(21):4755–4761. doi: 10.1021/bi00562a006. [DOI] [PubMed] [Google Scholar]
- Olson J. S., Mathews A. J., Rohlfs R. J., Springer B. A., Egeberg K. D., Sligar S. G., Tame J., Renaud J. P., Nagai K. The role of the distal histidine in myoglobin and haemoglobin. Nature. 1988 Nov 17;336(6196):265–266. doi: 10.1038/336265a0. [DOI] [PubMed] [Google Scholar]
- Ormos P., Braunstein D., Frauenfelder H., Hong M. K., Lin S. L., Sauke T. B., Young R. D. Orientation of carbon monoxide and structure-function relationship in carbonmonoxymyoglobin. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8492–8496. doi: 10.1073/pnas.85.22.8492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padlan E. A., Love W. E. Three-dimensional structure of hemoglobin from the polychaete annelid, Glycera dibranchiata, at 2.5 A resolution. J Biol Chem. 1974 Jul 10;249(13):4067–4078. [PubMed] [Google Scholar]
- Perutz M. F., Heidner E. J., Ladner J. E., Beetlestone J. G., Ho C., Slade E. F. Influence of globin structure on the state of the heme. 3. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry. 1974 May 7;13(10):2187–2200. doi: 10.1021/bi00707a028. [DOI] [PubMed] [Google Scholar]
- Phillips S. E., Schoenborn B. P. Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature. 1981 Jul 2;292(5818):81–82. doi: 10.1038/292081a0. [DOI] [PubMed] [Google Scholar]
- Priest D. G., Doig M. T., Mangum M. Response of mouse hepatoma cell methylenetetrahydrofolate polyglutamates to folate deprivation. Biochim Biophys Acta. 1983 Apr 20;756(3):253–257. doi: 10.1016/0304-4165(83)90332-x. [DOI] [PubMed] [Google Scholar]
- Rice R. H., Watts D. A., Brown W. D. Sequences of the soluble tryptic peptides from myoglobin of yellowfin tuna (Thunnus albacares). Comp Biochem Physiol B. 1979;62(4):481–487. doi: 10.1016/0305-0491(79)90121-4. [DOI] [PubMed] [Google Scholar]
- Rousseau D. L., Ching Y. C., Brunori M., Giacometti G. M. Axial coordination of ferric Aplysia myoglobin. J Biol Chem. 1989 May 15;264(14):7878–7881. [PubMed] [Google Scholar]
- Satterlee J. D., Teintze M., Richards J. H. Spectroscopic studies of the nature of ligand bonding in carbonmonoxyhemoglobins: evidence of a specific function for histidine-E7 from infrared and nuclear magnetic resonance intensities. Biochemistry. 1978 Apr 18;17(8):1456–1462. doi: 10.1021/bi00601a015. [DOI] [PubMed] [Google Scholar]
- Scholler D. M., Wang M. Y., Hoffman B. M. Resonance Raman and EPR of nitrosyl human hemoglobin and chains, carp hemoglobin, and model compounds. Implications for the nitrosyl heme coordination state. J Biol Chem. 1979 May 25;254(10):4072–4078. [PubMed] [Google Scholar]
- Seamonds B., Forster R. E., George P. Physicochemical properties of the hemoglobins from the common blood worm Glycera dibranchiata. J Biol Chem. 1971 Sep 10;246(17):5391–5397. [PubMed] [Google Scholar]
- Springer B. A., Egeberg K. D., Sligar S. G., Rohlfs R. J., Mathews A. J., Olson J. S. Discrimination between oxygen and carbon monoxide and inhibition of autooxidation by myoglobin. Site-directed mutagenesis of the distal histidine. J Biol Chem. 1989 Feb 25;264(6):3057–3060. [PubMed] [Google Scholar]
- Stephanos J. J., Addison A. W. Spectroscopic and kinetic aspects of Elephas maximus hemoglobin. Eur J Biochem. 1990 Apr 20;189(1):185–191. doi: 10.1111/j.1432-1033.1990.tb15475.x. [DOI] [PubMed] [Google Scholar]
- Strekas T. C., Spiro T. G. Resonance-raman evidence for anomalous heme structures in cytochrome c' from Rhodopseudomonas palustris. Biochim Biophys Acta. 1974 Jun 7;351(2):237–245. doi: 10.1016/0005-2795(74)90186-x. [DOI] [PubMed] [Google Scholar]
- Szabo A., Perutz M. F. Equilibrium between six- and five-coordinated hemes in nitrosylhemoglobin: interpretation of electron spin resonance spectra. Biochemistry. 1976 Oct 5;15(20):4427–4428. doi: 10.1021/bi00665a013. [DOI] [PubMed] [Google Scholar]
- TEALE F. W. Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta. 1959 Oct;35:543–543. doi: 10.1016/0006-3002(59)90407-x. [DOI] [PubMed] [Google Scholar]
- Tomita S., Riggs A. Studies of the interaction of 2,3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man, and elephant. J Biol Chem. 1971 Feb 10;246(3):547–554. [PubMed] [Google Scholar]
- Trittelvitz E., Sick H., Gersonde K. Conformational isomers of nitrosyl-haemoglobin. An electron-spin-resonance study. Eur J Biochem. 1972 Dec 18;31(3):578–584. doi: 10.1111/j.1432-1033.1972.tb02568.x. [DOI] [PubMed] [Google Scholar]
- Volpe J. A., O'Toole M. C., Caughey W. S. Quantitative infrared spectroscopy of CO complexes of cytochrome c oxidase, hemoglobin and myoglobin: evidence for one CO per heme. Biochem Biophys Res Commun. 1975 Jan 6;62(1):48–53. doi: 10.1016/s0006-291x(75)80403-7. [DOI] [PubMed] [Google Scholar]
- Weber P. C., Howard A., Xuong N. H., Salemme F. R. Crystallographic structure of Rhodospirillum molischianum ferricytochrome c' at 2.5 A resolution. J Mol Biol. 1981 Dec 5;153(2):399–424. doi: 10.1016/0022-2836(81)90286-2. [DOI] [PubMed] [Google Scholar]
- Yamamoto H., Kayne F. J., Yonetani T. Studies on cobalt myoglobins and hemoglobins. II. Kinetic studies of reversible oxygenation of cobalt myoglbins and hemoglobins by the temperature jump relaxation method. J Biol Chem. 1974 Feb 10;249(3):691–698. [PubMed] [Google Scholar]
- Yip Y. K., Waks M., Beychok S. Influence of prosthetic groups on protein folding and subunit assembly. I. Conformational differences between separated human alpha- and beta- globins. J Biol Chem. 1972 Nov 25;247(22):7237–7244. [PubMed] [Google Scholar]
- Yonetani T., Yamamoto H., Erman J. E., Leigh J. S., Jr, Reed G. H. Electromagnetic properties of hemoproteins. V. Optical and electron paramagnetic resonance characteristics of nitric oxide derivatives of metalloporphyrin-apohemoprotein complexes. J Biol Chem. 1972 Apr 25;247(8):2447–2455. [PubMed] [Google Scholar]
