Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 15;270(1):77–82. doi: 10.1042/bj2700077

Amino acid metabolism and protein synthesis in lactating rats fed on a liquid diet.

T Barber 1, J García de la Asunción 1, I R Puertes 1, J R Viña 1
PMCID: PMC1131680  PMID: 2396994

Abstract

1. Amino acid metabolism was studied in control virgin rats, lactating rats and virgin rats protein-pair-fed with the lactating rats (high-protein virgin rats). 2. Urinary excretion of nitrogen and urea was higher in lactating than in control virgin rats, and in high-protein virgin rats it was higher than in lactating rats. 3. The activities of urea-cycle enzymes (units/g) were higher in high-protein virgin than in lactating rats, except for arginase. In lactating rats the activities of carbamoyl-phosphate synthase, ornithine carbamoyltransferase and argininosuccinate synthase were lower than in control virgin rats. When the liver size is considered, the activities in lactating rats were similar to those in high-protein virgin rats, except for arginase. 4. N-Acetylglutamate content was higher in high-protein virgin rats than in the other two groups. 5. The rate of urea synthesis from precursors by isolated hepatocytes was higher in high-protein virgin rats than in the other two groups. 6. The flooding-dose method (L-[4-3H]phenylalanine) for measuring protein synthesis was used. The absolute synthesis rates of mammary gland, liver and small-intestinal mucosa were higher in lactating rats than in the other two groups, and in high-protein virgin rats than in control virgin rats 7. These results show that the increased needs for amino acids during lactation are met by hyperphagia and by a nitrogen-sparing mechanism.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso E., Girbés J., García-España A., Rubio V. Changes in urea cycle-related metabolites in the mouse after combined administration of valproic acid and an amino acid load. Arch Biochem Biophys. 1989 Aug 1;272(2):267–273. doi: 10.1016/0003-9861(89)90219-1. [DOI] [PubMed] [Google Scholar]
  2. Alonso E., Rubio V. Determination of N-acetyl-L-glutamate using high-performance liquid chromatography. Anal Biochem. 1985 Apr;146(1):252–259. doi: 10.1016/0003-2697(85)90423-3. [DOI] [PubMed] [Google Scholar]
  3. Barber T., Estornell E., Estelles R., Gomez D., Cabo J. Studies on the role of insulin in N metabolism changes in cafeteria-fed rats. Mol Cell Endocrinol. 1987 Mar;50(1-2):15–22. doi: 10.1016/0303-7207(87)90072-4. [DOI] [PubMed] [Google Scholar]
  4. Barber T., Viña J. R., Viña J., Cabo J. Decreased urea synthesis in cafeteria-diet-induced obesity in the rat. Biochem J. 1985 Sep 15;230(3):675–681. doi: 10.1042/bj2300675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bauman D. E., Currie W. B. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci. 1980 Sep;63(9):1514–1529. doi: 10.3168/jds.s0022-0302(80)83111-0. [DOI] [PubMed] [Google Scholar]
  6. Baur H., Kasperek S., Pfaff E. Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem. 1975 Jun;356(6):827–838. doi: 10.1515/bchm2.1975.356.s1.827. [DOI] [PubMed] [Google Scholar]
  7. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burnol A. F., Leturque A., Ferré P., Girard J. Glucose metabolism during lactation in the rat: quantitative and regulatory aspects. Am J Physiol. 1983 Oct;245(4):E351–E358. doi: 10.1152/ajpendo.1983.245.4.E351. [DOI] [PubMed] [Google Scholar]
  9. Casado J., Pastor-Anglada M., Remesar X. Hepatic uptake of amino acids at mid-lactation in the rat. Biochem J. 1987 Jul 1;245(1):297–300. doi: 10.1042/bj2450297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chatwin A. L., Linzell J. L., Setchell B. P. Cardiovascular changes during lactation in the rat. J Endocrinol. 1969 Jun;44(2):247–254. doi: 10.1677/joe.0.0440247. [DOI] [PubMed] [Google Scholar]
  11. Garlick P. J., McNurlan M. A., Preedy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J. 1980 Nov 15;192(2):719–723. doi: 10.1042/bj1920719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldspink D. F., Kelly F. J. Protein turnover and growth in the whole body, liver and kidney of the rat from the foetus to senility. Biochem J. 1984 Jan 15;217(2):507–516. doi: 10.1042/bj2170507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jordá A., Zaragozá R., Portolés M., Báguena-Cervellera R., Renau-Piqueras J. Long-term high-protein diet induces biochemical and ultrastructural changes in rat liver mitochondria. Arch Biochem Biophys. 1988 Sep;265(2):241–248. doi: 10.1016/0003-9861(88)90124-5. [DOI] [PubMed] [Google Scholar]
  14. Kimura T., Maji T., Ashida K. Periodicity of food intake and lipogenesis in rats subjected to two different feeding plans. J Nutr. 1970 Jun;100(6):691–697. doi: 10.1093/jn/100.6.691. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. MINARI O., ZILVERSMIT D. B. USE OF KCN FOR STABILIZATION OF COLOR IN DIRECT NESSLERIZATION OF KJELDAHL DIGESTS. Anal Biochem. 1963 Oct;6:320–327. doi: 10.1016/0003-2697(63)90156-8. [DOI] [PubMed] [Google Scholar]
  17. Millican P. E., Vernon R. G., Pain V. M. Protein metabolism in the mouse during pregnancy and lactation. Biochem J. 1987 Nov 15;248(1):251–257. doi: 10.1042/bj2480251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Motyl T. The urinary excretion of orotic acid and urea in dairy cows in early lactation. Zentralbl Veterinarmed A. 1986 Mar;33(3):169–173. doi: 10.1111/j.1439-0442.1986.tb00523.x. [DOI] [PubMed] [Google Scholar]
  19. Munday M. R., Williamson D. H. Diurnal variations in food intake and in lipogenesis in mammary gland and liver of lactating rats. Biochem J. 1983 Jul 15;214(1):183–187. doi: 10.1042/bj2140183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peret J., Foustock S., Chanez M., Bois-Joyeux B., Assan R. Plasma glucagon and insulin concentrations and hepatic phosphoenolpyruvate carboxykinase and pyruvate kinase activities during and upon adaptation of rats to a high protein diet. J Nutr. 1981 Jul;111(7):1173–1184. doi: 10.1093/jn/111.7.1173. [DOI] [PubMed] [Google Scholar]
  21. Robson N. A., Clegg R. A., Zammit V. A. Regulation of peripheral lipogenesis by glucagon. Inability of the hormone to inhibit lipogenesis in rat mammary acini in vitro in the presence or absence of agents which alter its effects on adipocytes. Biochem J. 1984 Feb 1;217(3):743–749. doi: 10.1042/bj2170743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rémésey C., Demigné C., Aufrère J. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets. Biochem J. 1978 Feb 15;170(2):321–329. doi: 10.1042/bj1700321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rémésy C., Morand C., Demigné C., Fafournoux P. Control of hepatic utilization of glutamine by transport processes or cellular metabolism in rats fed a high protein diet. J Nutr. 1988 May;118(5):569–578. doi: 10.1093/jn/118.5.569. [DOI] [PubMed] [Google Scholar]
  24. SCHIMKE R. T. Adaptive characteristics of urea cycle enzymes in the rat. J Biol Chem. 1962 Feb;237:459–468. [PubMed] [Google Scholar]
  25. Sampson D. A., Hunsaker H. A., Jansen G. R. Dietary protein quality, protein quantity and food intake: effects on lactation and on protein synthesis and tissue composition in mammary tissue and liver in rats. J Nutr. 1986 Mar;116(3):365–375. doi: 10.1093/jn/116.3.365. [DOI] [PubMed] [Google Scholar]
  26. Sampson D. A., Jansen G. R. Measurement of milk yield in the lactating rat from pup weight and weight gain. J Pediatr Gastroenterol Nutr. 1984 Sep;3(4):613–617. doi: 10.1097/00005176-198409000-00023. [DOI] [PubMed] [Google Scholar]
  27. Sampson D. A., Masor M., Jansen G. R. Protein synthesis in rat tissues during lactation. No effect of diethyl ether anaesthesia. Biochem J. 1984 Dec 1;224(2):681–683. doi: 10.1042/bj2240681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Viña J. R., Puertes I. R., Rodriguez A., Saez G. T., Viña J. Effect of fasting on amino acid metabolism by lactating mammary gland: studies in women and rats. J Nutr. 1987 Mar;117(3):533–538. doi: 10.1093/jn/117.3.533. [DOI] [PubMed] [Google Scholar]
  29. Viña J. R., Puertes I. R., Viña J. Effect of premature weaning on amino acid uptake by the mammary gland of lactating rats. Biochem J. 1981 Dec 15;200(3):705–708. doi: 10.1042/bj2000705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Viña J. R., Williamson D. H. Utilization of L-alanine and L-glutamine by lactating mammary gland of the rat. A role for L-alanine as a lipogenic precursor. Biochem J. 1981 Jun 15;196(3):757–762. doi: 10.1042/bj1960757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yatzidis H. New method for direct determination of "true" creatinine. Clin Chem. 1974 Sep;20(9):1131–1134. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES