Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Aug 15;270(1):109–118. doi: 10.1042/bj2700109

The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.

J M Wrigglesworth 1, C E Cooper 1, M A Sharpe 1, P Nicholls 1
PMCID: PMC1131685  PMID: 2168698

Abstract

1. The flux pathways for H+ and K+ movements into and out of proteoliposomes incorporating cytochrome c oxidase have been investigated as a function of the electrical and geometrical properties of the vesicles. 2. The respiration-induced pH gradient (delta pH) and membrane potential (delta psi) are mutually dependent and individually sensitive to the permeability properties of the membrane. A lowering or abolition of delta psi by the addition of valinomycin increased the steady-state level of delta pH. Conversely, removal of delta pH by the addition of nigericin resulted in a higher steady-state delta psi. 3. Vesicles prepared by sonication followed by centrifugation maintained similar pH gradients at steady state to those in vesicles prepared by dialysis, although the time taken to reach steady state was longer. Higher pH gradients can be induced in non-centrifuged sonicated preparations. 4. No significant differences were found in H+ and K+ permeability between proteoliposomes prepared by dialysis or by sonication. The permeability coefficient of the vesicle bilayers for H+ was 6.1 x 10(-4) cm.s-1 and that for K+ was 7.5 x 10(-10) cm.s-1. An initial fast change in internal pH was seen on the addition of external acid or alkali, followed by a slower, ionophore-sensitive, change. The initial fast phase can be increased by the lipid-soluble base dibucaine and the weak acid oleate. In the absence of ionophores, increasing concentrations of oleate increased the rate of H+ translocation to a level similar to that seen in the presence of nigericin. Internal alkalinization could also be induced by oleate upon the addition of potassium sulphate. 5. The initial, pre-steady-state and steady-state delta pH and delta psi changes can be simulated using a model in which the enzyme responds to both delta pH and delta psi components of the protonmotive force. At steady state, the electrogenic entry of K+ is countered by electroneutral exit via a K+/H+ exchange. 6. The permeability coefficient, PH, calculated from H+ flux under steady-state turnover conditions, was approx. 100 times higher than the corresponding 'passive' measurements of PH. Under conditions of oxidase turnover, the vesicles appear to be intrinsically more permeable to protons.

Full text

PDF
109

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casey R. P., Chappell J. B., Azzi A. Limited-turnover studies on proton translocation in reconstituted cytochrome c oxidase-containing vesicles. Biochem J. 1979 Jul 15;182(1):149–156. doi: 10.1042/bj1820149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Casey R. P. Membrane reconstitution of the energy-conserving enzymes of oxidative phosphorylation. Biochim Biophys Acta. 1984 Dec 17;768(3-4):319–347. doi: 10.1016/0304-4173(84)90021-1. [DOI] [PubMed] [Google Scholar]
  3. Casey R. P., O'Shea P. S., Chappell J. B., Azzi A. A quantitative characterisation of H+ translocation by cytochrome c oxidase vesicles. Biochim Biophys Acta. 1984 Apr 26;765(1):30–37. doi: 10.1016/0005-2728(84)90153-1. [DOI] [PubMed] [Google Scholar]
  4. Clement N. R., Gould J. M. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles. Biochemistry. 1981 Mar 17;20(6):1534–1538. doi: 10.1021/bi00509a019. [DOI] [PubMed] [Google Scholar]
  5. Cooper C. E., Nicholls P. Structure and vectorial properties of proteoliposomes containing cytochrome oxidase in the submitochondrial orientation. Biochemistry. 1990 Apr 24;29(16):3865–3871. doi: 10.1021/bi00468a010. [DOI] [PubMed] [Google Scholar]
  6. Deamer D. W., Bramhall J. Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):167–188. doi: 10.1016/0009-3084(86)90069-1. [DOI] [PubMed] [Google Scholar]
  7. Deamer D. W., Nichols J. W. Proton-hydroxide permeability of liposomes. Proc Natl Acad Sci U S A. 1983 Jan;80(1):165–168. doi: 10.1073/pnas.80.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Drachev L. A., Jasaitis A. A., Kaulen A. D., Kondrashin A. A., Chu L. V., Semenov A. Y., Severina I. I., Skulachev V. P. Reconstitution of biological molecular generators of electric current. Cytochrome oxidase. J Biol Chem. 1976 Nov 25;251(22):7072–7076. [PubMed] [Google Scholar]
  9. Gregory L. C., Ferguson-Miller S. Effect of subunit III removal on control of cytochrome c oxidase activity by pH. Biochemistry. 1988 Aug 23;27(17):6307–6314. doi: 10.1021/bi00417a016. [DOI] [PubMed] [Google Scholar]
  10. Grover A. K., Singh A. P., Rangachari P. K., Nicholls P. Ion movements in membrane vesicles: a new fluorescence method and application to smooth muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C372–C378. doi: 10.1152/ajpcell.1985.248.3.C372. [DOI] [PubMed] [Google Scholar]
  11. Gutknecht J. Proton/hydroxide conductance and permeability through phospholipid bilayer membranes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6443–6446. doi: 10.1073/pnas.84.18.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinkle P. C. Electron transfer across membranes and energy coupling. Fed Proc. 1973 Sep;32(9):1988–1992. [PubMed] [Google Scholar]
  13. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  14. Hope M. J., Cullis P. R. Lipid asymmetry induced by transmembrane pH gradients in large unilamellar vesicles. J Biol Chem. 1987 Mar 25;262(9):4360–4366. [PubMed] [Google Scholar]
  15. Hope M. J., Redelmeier T. E., Wong K. F., Rodrigueza W., Cullis P. R. Phospholipid asymmetry in large unilamellar vesicles induced by transmembrane pH gradients. Biochemistry. 1989 May 16;28(10):4181–4187. doi: 10.1021/bi00436a009. [DOI] [PubMed] [Google Scholar]
  16. Jasàitis A. A., Nemecek I. B., Severina I. I., Skulachev V. P., Smirnova S. M. Membrane potential generation by two reconstituted mitochondrial systems: liposomes inlayed with cytochrome oxidase or with ATPase. Biochim Biophys Acta. 1972 Sep 20;275(3):485–490. doi: 10.1016/0005-2728(72)90233-2. [DOI] [PubMed] [Google Scholar]
  17. Kim R. S., LaBella F. S. Calcium translocation by fatty acid derivatives in a two-phase partition model. Structure-activity relationships. Biochim Biophys Acta. 1985 Mar 6;833(3):386–395. doi: 10.1016/0005-2760(85)90095-5. [DOI] [PubMed] [Google Scholar]
  18. Krishnamoorthy G., Hinkle P. C. Non-ohmic proton conductance of mitochondria and liposomes. Biochemistry. 1984 Apr 10;23(8):1640–1645. doi: 10.1021/bi00303a009. [DOI] [PubMed] [Google Scholar]
  19. Kuboyama M., Yong F. C., King T. E. Studies on cytochrome oxidase. 8. Preparation and some properties of cardiac cytochrome oxidase. J Biol Chem. 1972 Oct 25;247(20):6375–6383. [PubMed] [Google Scholar]
  20. Luisi P. L., Giomini M., Pileni M. P., Robinson B. H. Reverse micelles as hosts for proteins and small molecules. Biochim Biophys Acta. 1988 Feb 24;947(1):209–246. doi: 10.1016/0304-4157(88)90025-1. [DOI] [PubMed] [Google Scholar]
  21. Maison-Peteri B., Malmström B. G. Intrinsic uncoupling in proton-pumping cytochrome c oxidase: pH dependence of cytochrome c oxidation in coupled and uncoupled phospholipid vesicles. Biochemistry. 1989 Apr 18;28(8):3156–3160. doi: 10.1021/bi00434a007. [DOI] [PubMed] [Google Scholar]
  22. Malmström B. G. The mechanism of proton translocation in respiration and photosynthesis. FEBS Lett. 1989 Jun 19;250(1):9–21. doi: 10.1016/0014-5793(89)80675-1. [DOI] [PubMed] [Google Scholar]
  23. Martinek K., Levashov A. V., Klyachko N., Khmelnitski Y. L., Berezin I. V. Micellar enzymology. Eur J Biochem. 1986 Mar 17;155(3):453–468. doi: 10.1111/j.1432-1033.1986.tb09512.x. [DOI] [PubMed] [Google Scholar]
  24. Montal M. Experimental membranes and mechanisms of bioenergy transductions. Annu Rev Biophys Bioeng. 1976;5:119–175. doi: 10.1146/annurev.bb.05.060176.001003. [DOI] [PubMed] [Google Scholar]
  25. Murphy M. P., Brand M. D. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. Eur J Biochem. 1988 May 2;173(3):637–644. doi: 10.1111/j.1432-1033.1988.tb14046.x. [DOI] [PubMed] [Google Scholar]
  26. Murphy M. P., Brand M. D. The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. Eur J Biochem. 1988 May 2;173(3):645–651. doi: 10.1111/j.1432-1033.1988.tb14047.x. [DOI] [PubMed] [Google Scholar]
  27. Nichols J. W., Deamer D. W. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2038–2042. doi: 10.1073/pnas.77.4.2038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. O'Shea P. S., Petrone G., Casey R. P., Azzi A. The current-voltage relationships of liposomes and mitochondria. Biochem J. 1984 May 1;219(3):719–726. doi: 10.1042/bj2190719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. PAULY H., PACKER L., SCHWAN H. P. Electrical properties of mitochondrial membranes. J Biophys Biochem Cytol. 1960 Jul;7:589–601. doi: 10.1083/jcb.7.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Proteau G., Wrigglesworth J. M., Nicholls P. Protonmotive functions of cytochrome c oxidase in reconstituted vesicles. Influence of turnover rate on 'proton translocation'. Biochem J. 1983 Jan 15;210(1):199–205. doi: 10.1042/bj2100199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ptak M., Egret-Charlier M., Sanson A., Bouloussa O. A NMR study of the ionization of fatty acids, fatty amines and N-acylamino acids incorporated in phosphatidylcholine vesicles. Biochim Biophys Acta. 1980 Aug 4;600(2):387–397. doi: 10.1016/0005-2736(80)90442-3. [DOI] [PubMed] [Google Scholar]
  32. Sarti P., Antonini G., Malatesta F., Vallone B., Villaschi S., Brunori M., Hider R. C., Hamed K. Reconstitution of cytochrome c oxidase in phospholipid vesicles containing polyvinylic polymers. Biochem J. 1989 Feb 1;257(3):783–787. doi: 10.1042/bj2570783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Serhan C., Anderson P., Goodman E., Dunham P., Weissmann G. Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes. J Biol Chem. 1981 Mar 25;256(6):2736–2741. [PubMed] [Google Scholar]
  34. Simpson R. J., Moore R., Peters T. J. Significance of non-esterified fatty acids in iron uptake by intestinal brush-border membrane vesicles. Biochim Biophys Acta. 1988 Jun 7;941(1):39–47. doi: 10.1016/0005-2736(88)90211-8. [DOI] [PubMed] [Google Scholar]
  35. Simpson R. J., Peters T. J. Transport of Fe2+ across lipid bilayers: possible role of free fatty acids. Biochim Biophys Acta. 1987 Apr 9;898(2):187–195. doi: 10.1016/0005-2736(87)90037-x. [DOI] [PubMed] [Google Scholar]
  36. Singh A. P., Chanady G. A., Nicholls P. Interactions involving the cyanine dye, diS-C3-(5), cytochrome c and liposomes and their implications for estimations of delta psi in cytochrome c oxidase-reconstituted proteoliposomes. J Membr Biol. 1985;84(2):183–190. doi: 10.1007/BF01872216. [DOI] [PubMed] [Google Scholar]
  37. Singh A. P., Nicholls P. Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituted proteoliposomes. J Biochem Biophys Methods. 1985 Aug;11(2-3):95–108. doi: 10.1016/0165-022x(85)90045-4. [DOI] [PubMed] [Google Scholar]
  38. Singh A. P., Nicholls P. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Biochim Biophys Acta. 1984 Nov 7;777(2):194–200. doi: 10.1016/0005-2736(84)90420-6. [DOI] [PubMed] [Google Scholar]
  39. Singh A. P., Nicholls P. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution. Arch Biochem Biophys. 1986 Mar;245(2):436–445. doi: 10.1016/0003-9861(86)90235-3. [DOI] [PubMed] [Google Scholar]
  40. Solioz M., Carafoli E., Ludwig B. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem. 1982 Feb 25;257(4):1579–1582. [PubMed] [Google Scholar]
  41. Walde P., Peng Q., Fadnavis N. W., Battistel E., Luisi P. L. Structure and activity of trypsin in reverse micelles. Eur J Biochem. 1988 Apr 15;173(2):401–409. doi: 10.1111/j.1432-1033.1988.tb14013.x. [DOI] [PubMed] [Google Scholar]
  42. Wrigglesworth J. M. Incorporation of membrane proteins into liposomal bilayers. Mol Aspects Med. 1988;10(3):223–232. doi: 10.1016/0098-2997(88)90008-8. [DOI] [PubMed] [Google Scholar]
  43. Wrigglesworth J. M., Nicholls P. Turnover and vectorial properties of cytochrome c oxidase in reconstituted vesicles. Biochim Biophys Acta. 1979 Jul 10;547(1):36–46. doi: 10.1016/0005-2728(79)90093-8. [DOI] [PubMed] [Google Scholar]
  44. Wrigglesworth J. M. Quantization of membrane potential generation by cytochrome c oxidase in small vesicles. J Inorg Biochem. 1985 Mar-Apr;23(3-4):311–316. doi: 10.1016/0162-0134(85)85040-6. [DOI] [PubMed] [Google Scholar]
  45. Wrigglesworth J. M., Wooster M. S., Elsden J., Danneel H. J. Dynamics of proteoliposome formation. Intermediate states during detergent dialysis. Biochem J. 1987 Sep 15;246(3):737–744. doi: 10.1042/bj2460737. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES