Abstract
1. The effects of 3-, 4- and 5-thia-substituted fatty acids on mitochondrial and peroxisomal beta-oxidation have been investigated. When the sulphur atom is in the 4-position, the resulting thia-substituted fatty acid becomes a powerful inhibitor of beta-oxidation. 2. This inhibition cannot be explained in terms of simple competitive inhibition, a phenomenon which characterizes the inhibitory effects of 3- and 5-thia-substituted fatty acids. The inhibitory sites for 4-thia-substituted fatty acids are most likely to be the acyl-CoA dehydrogenase in mitochondria and the acyl-CoA oxidase in peroxisomes. 3. The inhibitory effect of 4-thia-substituted fatty acids is expressed both in vitro and in vivo. The effect in vitro is instantaneous, with up to 95% inhibition of palmitoylcarnitine oxidation. The effect in vivo, in contrast, is dose-dependent and increases with duration of treatment. 4. Pretreatment of rats with a 3-thia-substituted fatty acid rendered mitochondrial beta-oxidation less sensitive to inhibition by 4-thia-substituted fatty acids.
Full text
PDF![167](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/14016832565e/biochemj00177-0168.png)
![168](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/c9afbb7a28a2/biochemj00177-0169.png)
![169](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/22c1f76a8dc9/biochemj00177-0170.png)
![170](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/fc918890d670/biochemj00177-0171.png)
![171](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/4f834aa567c5/biochemj00177-0172.png)
![172](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/91f041770578/biochemj00177-0173.png)
![173](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1814/1131694/44c567424ce0/biochemj00177-0174.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarsland A., Aarsaether N., Bremer J., Berge R. K. Alkylthioacetic acids (3-thia fatty acids) as non-beta-oxidizable fatty acid analogues: a new group of hypolipidemic drugs. III. Dissociation of cholesterol- and triglyceride-lowering effects and the induction of peroxisomal beta-oxidation. J Lipid Res. 1989 Nov;30(11):1711–1718. [PubMed] [Google Scholar]
- Berge R. K., Aarsland A., Kryvi H., Bremer J., Aarsaether N. Alkylthio acetic acids (3-thia fatty acids)--a new group of non-beta-oxidizable peroxisome-inducing fatty acid analogues--II. Dose-response studies on hepatic peroxisomal- and mitochondrial changes and long-chain fatty acid metabolizing enzymes in rats. Biochem Pharmacol. 1989 Nov 15;38(22):3969–3979. doi: 10.1016/0006-2952(89)90676-x. [DOI] [PubMed] [Google Scholar]
- Berge R. K., Aarsland A., Kryvi H., Bremer J., Aarsaether N. Alkylthioacetic acid (3-thia fatty acids)--a new group of non-beta-oxidizable, peroxisome-inducing fatty acid analogues. I. A study on the structural requirements for proliferation of peroxisomes and mitochondria in rat liver. Biochim Biophys Acta. 1989 Aug 22;1004(3):345–356. doi: 10.1016/0005-2760(89)90083-0. [DOI] [PubMed] [Google Scholar]
- Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vivo studies. Biochem Pharmacol. 1978;27(24):2891–2900. doi: 10.1016/0006-2952(78)90205-8. [DOI] [PubMed] [Google Scholar]
- Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
- Furuta S., Miyazawa S., Hashimoto T. Induction of acyl-CoA dehydrogenases and electron transfer flavoprotein and their roles in fatty acid oxidation in rat liver mitochondria. J Biochem. 1981 Dec;90(6):1751–1756. doi: 10.1093/oxfordjournals.jbchem.a133652. [DOI] [PubMed] [Google Scholar]
- Hovik R., Osmundsen H. A kinetic investigation of the acyl-CoA oxidase reaction with the use of a novel spectrophotometric assay. Inhibition by acetyl-CoA, CoA and FMN. Biochem J. 1989 Oct 1;263(1):297–299. doi: 10.1042/bj2630297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hovik R., Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987 Nov 1;247(3):531–535. doi: 10.1042/bj2470531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lau S. M., Brantley R. K., Thorpe C. 4-Thia-trans-2-alkenoyl-CoA derivatives: properties and enzymatic reactions. Biochemistry. 1989 Oct 3;28(20):8255–8262. doi: 10.1021/bi00446a043. [DOI] [PubMed] [Google Scholar]
- Lau S. M., Brantley R. K., Thorpe C. The reductive half-reaction in Acyl-CoA dehydrogenase from pig kidney: studies with thiaoctanoyl-CoA and oxaoctanoyl-CoA analogues. Biochemistry. 1988 Jul 12;27(14):5089–5095. doi: 10.1021/bi00414a021. [DOI] [PubMed] [Google Scholar]
- Neat C. E., Thomassen M. S., Osmundsen H. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient. Biochem J. 1981 Apr 15;196(1):149–159. doi: 10.1042/bj1960149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmudsen H. Effects of pent-4-enoate on flux through acyl-CoA dehydrogenases of beta-oxidation in intact rat liver mitochondria. FEBS Lett. 1978 Apr 15;88(2):219–222. doi: 10.1016/0014-5793(78)80178-1. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Bjørnstad K. Inhibitory effects of some long-chain unsaturated fatty acids on mitochondrial beta-oxidation. Effects of streptozotocin-induced diabetes on mitochondrial beta-oxidation of polyunsaturated fatty acids. Biochem J. 1985 Sep 1;230(2):329–337. doi: 10.1042/bj2300329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Bremer J. A spectrophotometric procedure for rapid and sensitive measurements of beta-oxidation. Demonstration of factors that can be rate-limiting for beta-oxidation. Biochem J. 1977 Jun 15;164(3):621–633. doi: 10.1042/bj1640621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Cervenka J., Bremer J. A role for 2,4-enoyl-CoA reductase in mitochondrial beta-oxidation of polyunsaturated fatty acids. Effects of treatment with clofibrate on oxidation of polyunsaturated acylcarnitines by isolated rat liver mitochondria. Biochem J. 1982 Dec 15;208(3):749–757. doi: 10.1042/bj2080749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osmundsen H., Neat C. E., Norum K. R. Peroxisomal oxidation of long chain fatty acids. FEBS Lett. 1979 Mar 15;99(2):292–296. doi: 10.1016/0014-5793(79)80975-8. [DOI] [PubMed] [Google Scholar]
- Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
- Solberg H. E., Aas M., Daae L. N. The activity of the different carnitine acyltransferases in the liver of clofibrate-fed rats. Biochim Biophys Acta. 1972 Nov 30;280(3):434–439. doi: 10.1016/0005-2760(72)90249-4. [DOI] [PubMed] [Google Scholar]
- Spydevold O., Bremer J. Induction of peroxisomal beta-oxidation in 7800 C1 Morris hepatoma cells in steady state by fatty acids and fatty acid analogues. Biochim Biophys Acta. 1989 May 15;1003(1):72–79. doi: 10.1016/0005-2760(89)90101-x. [DOI] [PubMed] [Google Scholar]
- Van Hoof F., Hue L., Vamecq J., Sherratt H. S. Protection of rats by clofibrate against the hypoglycaemic and toxic effects of hypoglycin and pent-4-enoate. An ultrastructural and biochemical study. Biochem J. 1985 Jul 15;229(2):387–397. doi: 10.1042/bj2290387. [DOI] [PMC free article] [PubMed] [Google Scholar]