Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 1;270(2):319–323. doi: 10.1042/bj2700319

Modification of uridine phosphorylase from Escherichia coli by diethyl pyrocarbonate. Evidence for a histidine residue in the active site of the enzyme.

A K Drabikowska 1, G Woźniak 1
PMCID: PMC1131723  PMID: 2205199

Abstract

Uridine phosphorylase from Escherichia coli is inactivated by diethyl pyrocarbonate at pH 7.1 and 10 degrees C with a second-order rate constant of 840 M-1.min-1. The rate of inactivation increases with pH, suggesting participation of an amino acid residue with pK 6.6. Hydroxylamine added to the inactivated enzyme restores the activity. Three histidine residues per enzyme subunit are modified by diethyl pyrocarbonate. Kinetic and statistical analyses of the residual enzymic activity, as well as the number of modified histidine residues, indicate that, among the three modifiable residues, only one is essential for enzyme activity. The reactivity of this histidine residue exceeded 10-fold the reactivity of the other two residues. Uridine, though at high concentration, protects the enzyme against inactivation and the very reactive histidine residue against modification. Thus it may be concluded that uridine phosphorylase contains only one histidine residue in each of its six subunits that is essential for enzyme activity.

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRNIE G. D., KROEGER H., HEIDELBERGER C. STUDIES OF FLUORINATED PYRIMIDINES. XVIII. THE DEGRADATION OF 5-FLUORO-2'-DEOXYURIDINE AND RELATED COMPOUNDS BY NUCLEOSIDE PHOSPHORYLASE. Biochemistry. 1963 May-Jun;2:566–572. doi: 10.1021/bi00903a031. [DOI] [PubMed] [Google Scholar]
  2. Baker B. R., Kelley J. L. Irreversible enzyme inhibitors. CLXXI. Inhibition of FUDR phosphorylase from Walker 256 rat tumor by 5-substituted uracils. J Med Chem. 1970 May;13(3):461–467. doi: 10.1021/jm00297a029. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
  5. Church F. C., Lundblad R. L., Noyes C. M. Modification of histidines in human prothrombin. Effect on the interaction of fibrinogen with thrombin from diethyl pyrocarbonate-modified prothrombin. J Biol Chem. 1985 Apr 25;260(8):4936–4940. [PubMed] [Google Scholar]
  6. Cook W. J., Koszalka G. W., Hall W. W., Narayana S. V., Ealick S. E. Crystallization and preliminary X-ray investigation of uridine phosphorylase from Escherichia coli. J Biol Chem. 1987 Feb 25;262(6):2852–2853. [PubMed] [Google Scholar]
  7. Cousineau J., Meighen E. Chemical modification of bacterial luciferase with ethoxyformic anhydride: evidence for an essential histidyl residue. Biochemistry. 1976 Nov 16;15(23):4992–5000. doi: 10.1021/bi00668a008. [DOI] [PubMed] [Google Scholar]
  8. Drabikowska A. K., Lissowska L., Draminski M., Zgit-Wroblewska A., Shugar D. Acyclonucleoside analogues consisting of 5- and 5,6-substituted uracils and different acyclic chains: inhibitory properties vs purified E. coli uridine phosphorylase. Z Naturforsch C. 1987 Mar;42(3):288–296. [PubMed] [Google Scholar]
  9. Drabikowska A. K., Lissowska L., Veres Z., Shugar D. Inhibitor properties of some 5-substituted uracil acyclonucleosides, and 2,2'-anhydrouridines versus uridine phosphorylase from E. coli and mammalian sources. Biochem Pharmacol. 1987 Dec 1;36(23):4125–4128. doi: 10.1016/0006-2952(87)90570-3. [DOI] [PubMed] [Google Scholar]
  10. HEIDELBERGER C., GRIESBACH L., CRUZ O., SCHNITZER R. J., GRUNBERG E. Fluorinated pyrimidines. VI. Effects of 5-fluorouridine and 5-fluoro-2'-deoxyuridine on transplanted tumors. Proc Soc Exp Biol Med. 1958 Feb;97(2):470–475. doi: 10.3181/00379727-97-23777. [DOI] [PubMed] [Google Scholar]
  11. Holbrook J. J., Ingram V. A. Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase. Biochem J. 1973 Apr;131(4):729–738. doi: 10.1042/bj1310729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KRENITSKY T. A., BARCLAY M., JACQUEZ J. A. SPECIFICITY OF MOUSE URIDINE PHOSPHORYLASE. CHROMATOGRAPHY, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Mar;239:805–812. [PubMed] [Google Scholar]
  13. LEVY H. M., LEBER P. D., RYAN E. M. INACTIVATION OF MYOSIN BY 2,4-DINITROPHENOL AND PROTECTION BY ADENOSINE TRIPHOSPHATE AND OTHER PHOSPHATE COMPOUNDS. J Biol Chem. 1963 Nov;238:3654–3659. [PubMed] [Google Scholar]
  14. Leer J. C., Hammer-Jespersen K., Schwartz M. Uridine phosphorylase from Escherichia coli. Physical and chemical characterization. Eur J Biochem. 1977 May 2;75(1):217–224. doi: 10.1111/j.1432-1033.1977.tb11520.x. [DOI] [PubMed] [Google Scholar]
  15. Lin T. S., Liu M. C. Synthesis of 1-[[2-hydroxy-1-(hydroxymethyl)ethoxy] methyl]-5-benzyluracil and its amino analogue, new potent uridine phosphorylase inhibitors with high water solubility. J Med Chem. 1985 Jul;28(7):971–973. doi: 10.1021/jm00145a023. [DOI] [PubMed] [Google Scholar]
  16. Melchior W. B., Jr, Fahrney D. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with alpha-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4. Biochemistry. 1970 Jan 20;9(2):251–258. doi: 10.1021/bi00804a010. [DOI] [PubMed] [Google Scholar]
  17. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  18. Niedzwicki J. G., Chu S. H., el Kouni M. H., Rowe E. C., Cha S. 5-benzylacyclouridine and 5-benzyloxybenzylacyclouridine, potent inhibitors of uridine phosphorylase. Biochem Pharmacol. 1982 May 15;31(10):1857–1861. doi: 10.1016/0006-2952(82)90488-9. [DOI] [PubMed] [Google Scholar]
  19. Niedzwicki J. G., el Kouni M. H., Chu S. H., Cha S. Pyrimidine acyclonucleosides, inhibitors of uridine phosphorylase. Biochem Pharmacol. 1981 Aug 1;30(15):2097–2101. doi: 10.1016/0006-2952(81)90228-8. [DOI] [PubMed] [Google Scholar]
  20. Niedzwicki J. G., el Kouni M. H., Chu S. H., Cha S. Structure-activity relationship of ligands of the pyrimidine nucleoside phosphorylases. Biochem Pharmacol. 1983 Feb 1;32(3):399–415. doi: 10.1016/0006-2952(83)90517-8. [DOI] [PubMed] [Google Scholar]
  21. PONTIS H., DEGERSTEDT G., REICHARD P. Uridine and deoxyuridine phosphorylases from Ehrlich ascites tumor. Biochim Biophys Acta. 1961 Jul 22;51:138–147. doi: 10.1016/0006-3002(61)91024-1. [DOI] [PubMed] [Google Scholar]
  22. RAY W. J., Jr, KOSHLAND D. E., Jr A method for characterizing the type and numbers of groups involved in enzyme action. J Biol Chem. 1961 Jul;236:1973–1979. [PubMed] [Google Scholar]
  23. TSOU C. L. Relation between modification of functional groups of proteins and their biological activity. I.A graphical method for the determination of the number and type of essential groups. Sci Sin. 1962 Nov;11:1535–1558. [PubMed] [Google Scholar]
  24. Veres Z., Szabolcs A., Szinai I., Dénes G., Kajtár-Peredy M., Otvös L. 5-Substituted-2,2'-anhydrouridines, potent inhibitors of uridine phosphorylase. Biochem Pharmacol. 1985 May 15;34(10):1737–1740. doi: 10.1016/0006-2952(85)90643-4. [DOI] [PubMed] [Google Scholar]
  25. Vita A., Huang C. Y., Magni G. Uridine phosphorylase from Escherichia coli B.: kinetic studies on the mechanism of catalysis. Arch Biochem Biophys. 1983 Oct 15;226(2):687–692. doi: 10.1016/0003-9861(83)90339-9. [DOI] [PubMed] [Google Scholar]
  26. Vita A., Magni G. A one-step procedure for the purification of uridine phosphorylase from Escherichia coli. Anal Biochem. 1983 Aug;133(1):153–156. doi: 10.1016/0003-2697(83)90236-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES