Abstract
The role of cyclic AMP in the regulation of lutropin (luteinizing hormone, LH) receptors has been investigated in cultured mouse tumour (MA10) Leydig cells. The LH receptors were quantified by measuring the binding of 125I-labelled human chorionic gonadotropin (hCG). LH (0.03 nM) in the presence of 1 mM-dibutyryl-cyclic AMP [(Bu)2cAMP] caused a 3-8-fold increase in subsequent 125I-hCG binding. (Bu)2cAMP (1 mM), cholera toxin (11.9 nM) and forskolin (1 microM) each caused a 2-4-fold increase in binding. In the presence of translation (cycloheximide) and transcription (actinomycin D) inhibitors, there was a loss of detectable binding sites. (Bu)2cAMP increased the rate of recovery of binding sites after trypsin treatment of MA10 cells, with a concomitant 2-fold increase in the level of binding sites. Under conditions where receptor levels were increased by 3-8-fold there was also a significant increase in pregnenolone production. It is concluded that LH and cyclic AMP have positive regulatory effects on LH receptors in MA10 cells by inducing the synthesis of new receptors. These induced receptors are functionally coupled to steroidogenesis.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abayasekara D. R., Band A. M., Cooke B. A. Evidence for the involvement of phospholipase A2 in the regulation of luteinizing hormone-stimulated steroidogenesis in rat testis Leydig cells. Mol Cell Endocrinol. 1990 Apr 17;70(2):147–153. doi: 10.1016/0303-7207(90)90154-z. [DOI] [PubMed] [Google Scholar]
- Aldred L. F., Cooke B. A. The effect of cell damage on the density and steroidogenic capacity of rat testis Leydig cells, using an NADH exclusion test for determination of viability. J Steroid Biochem. 1983 Apr;18(4):411–414. doi: 10.1016/0022-4731(83)90059-6. [DOI] [PubMed] [Google Scholar]
- Ascoli M. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology. 1981 Jan;108(1):88–95. doi: 10.1210/endo-108-1-88. [DOI] [PubMed] [Google Scholar]
- Ascoli M. Internalization and degradation of receptor-bound human choriogonadotropin in Leydig tumor cells. Fate of the hormone subunits. J Biol Chem. 1982 Nov 25;257(22):13306–13311. [PubMed] [Google Scholar]
- Ascoli M., Segaloff D. L. On the fates of receptor-bound ovine luteinizing hormone and human chorionic gonadotropin in cultured Leydig tumor cells. Demonstration of similar rates of internalization. Endocrinology. 1987 Mar;120(3):1161–1172. doi: 10.1210/endo-120-3-1161. [DOI] [PubMed] [Google Scholar]
- Barañao J. L., Dufau M. L. Gonadotropin-induced changes in the luteinizing hormone receptors of cultured Leydig cells. Evidence of up-regulation in vitro. J Biol Chem. 1983 Jun 25;258(12):7322–7330. [PubMed] [Google Scholar]
- Dix C. J., Habberfield A. D., Cooke B. A. Similarities and differences in phorbol ester- and luteinizing-hormone-induced desensitization of rat tumour Leydig-cell adenylate cyclase. Biochem J. 1987 Apr 15;243(2):373–377. doi: 10.1042/bj2430373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dumont J. E., Jauniaux J. C., Roger P. P. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989 Feb;14(2):67–71. doi: 10.1016/0968-0004(89)90046-7. [DOI] [PubMed] [Google Scholar]
- Freeman D. A., Ascoli M. Desensitization to gonadotropins in cultured Leydig tumor cells involves loss of gonadotropin receptors and decreased capacity for steroidogenesis. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6309–6313. doi: 10.1073/pnas.78.10.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorin E., Honeyman T. W., Tai L. R., Goodman H. M. Adenosine 3',5'-monophosphate-dependent loss of growth hormone binding in rat adipocytes. Endocrinology. 1988 Jul;123(1):328–334. doi: 10.1210/endo-123-1-328. [DOI] [PubMed] [Google Scholar]
- Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
- Huhtaniemi I. T., Katikineni M., Chan V., Catt K. J. Gonadotropin-induced positive regulation of testicular luteinizing hormone receptors. Endocrinology. 1981 Jan;108(1):58–65. doi: 10.1210/endo-108-1-58. [DOI] [PubMed] [Google Scholar]
- Jeejeebhoy K. N., Ho J., Greenberg G. R., Phillips M. J., Bruce-Robertson A., Sodtke U. Albumin, fibrinogen and transferrin synthesis in isolated rat hepatocyte suspensions. A model for the study of plasma protein synthesis. Biochem J. 1975 Jan;146(1):141–155. doi: 10.1042/bj1460141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knecht M., Catt K. J. Induction of luteinizing hormone receptors by adenosine 3',5'-monophosphate in cultured granulosa cells. Endocrinology. 1982 Oct;111(4):1192–1200. doi: 10.1210/endo-111-4-1192. [DOI] [PubMed] [Google Scholar]
- Knecht M., Darbon J. M., Ranta T., Baukal A. J., Catt K. J. Estrogens enhance the adenosine 3',5'-monophosphate-mediated induction of follicle-stimulating hormone and luteinizing hormone receptors in rat granulosa cells. Endocrinology. 1984 Jul;115(1):41–49. doi: 10.1210/endo-115-1-41. [DOI] [PubMed] [Google Scholar]
- Lissitzky S., Fayet G., Verrier B. Thyrotropin-receptor interaction and cyclic AMP-mediated effects in thyroid cells. Adv Cyclic Nucleotide Res. 1975;5:133–152. [PubMed] [Google Scholar]
- Pastan I. H., Johnson G. S., Anderson W. B. Role of cyclic nucleotides in growth control. Annu Rev Biochem. 1975;44:491–522. doi: 10.1146/annurev.bi.44.070175.002423. [DOI] [PubMed] [Google Scholar]
- Segaloff D. L., Ascoli M. Removal of the surface-bound human choriogonadotropin results in the cessation of hormonal responses in cultured Leydig tumor cells. J Biol Chem. 1981 Nov 25;256(22):11420–11423. [PubMed] [Google Scholar]
- Segaloff D. L., Limbird L. E. The cAMP-Dependent induction of LH receptors in primary cultures of porcine granulosa cells is not due to the expression of an intracellular pool of LH receptors. Endocrinology. 1983 Aug;113(2):825–827. doi: 10.1210/endo-113-2-825. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Stocco D. M., Kilgore M. W. Induction of mitochondrial proteins in MA-10 Leydig tumour cells with human choriogonadotropin. Biochem J. 1988 Jan 1;249(1):95–103. doi: 10.1042/bj2490095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomopoulos P., Kosmakos F. C., Pastan I., Lovelace E. Cyclic AMP increases the concentration of insulin receptors in cultured fibroblasts and lymphocytes. Biochem Biophys Res Commun. 1977 Mar 21;75(2):246–252. doi: 10.1016/0006-291x(77)91035-x. [DOI] [PubMed] [Google Scholar]
- Thorell J. I., Johansson B. G. Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim Biophys Acta. 1971 Dec 28;251(3):363–369. doi: 10.1016/0005-2795(71)90123-1. [DOI] [PubMed] [Google Scholar]
- Van Der Vusse G. J., Kalkman M. L., Van Der Molen H. J. Endogenous steroid production in cellular and subcellular fractions of rat testis after prolonged treatment with gonadotropins. Biochim Biophys Acta. 1975 Mar 24;380(3):473–485. doi: 10.1016/0005-2760(75)90114-9. [DOI] [PubMed] [Google Scholar]
