Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 15;270(3):705–713. doi: 10.1042/bj2700705

The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device.

P Jackson 1
PMCID: PMC1131789  PMID: 2241903

Abstract

Various monosaccharides, oligosaccharides and small polysaccharides were labelled covalently at their reducing end groups with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid (ANTS), and the resulting fluorescent derivatives were separated by high-resolution PAGE. The electrophoretic mobilities of the labelled saccharides are related largely to the compounds' Mr values, but they are also influenced by the individual chemical structures of the saccharides. Various positional isomers and some epimers, for instance galactose and glucose, were resolved. Oligosaccharide and small polysaccharide derivatives, prepared from an enzymic digest of starch, each differing in size by a single hexose residue and with a range of degrees of polymerization from 2 to 26, were all resolved in a single gel. The method was relatively rapid and simple to perform. It enabled multiple samples to be analysed in parallel with high sensitivity. The fluorescent-labelling procedure was virtually quantitative. As little as 1 pmol of ANTS-labelled saccharide was detected photographically when the gels were illuminated by u.v. light. When the gels were viewed using an imaging system based on a cooled charge-coupled device, as little as 0.2 pmol was detected. The method may be useful for the structural analysis of the carbohydrate moieties of glycoconjugates and other naturally occurring oligosaccharides.

Full text

PDF
705

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker R., Nunez H. A., Rosevear P., Serianni A. S. 13C NMR analysis of complex carbohydrates. Methods Enzymol. 1982;83:58–69. doi: 10.1016/0076-6879(82)83005-x. [DOI] [PubMed] [Google Scholar]
  2. Das O. P., Henderson E. J. Fluorographic detection of tritiated glycopeptides and oligosaccharides separated on polyacrylamide gels: analysis of glycans from Dictyostelium discoideum glycoproteins. Anal Biochem. 1986 Nov 1;158(2):390–398. doi: 10.1016/0003-2697(86)90566-x. [DOI] [PubMed] [Google Scholar]
  3. Feizi T., Childs R. A. Carbohydrates as antigenic determinants of glycoproteins. Biochem J. 1987 Jul 1;245(1):1–11. doi: 10.1042/bj2450001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hara S., Yamaguchi M., Takemori Y., Furuhata K., Ogura H., Nakamura M. Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal Biochem. 1989 May 15;179(1):162–166. doi: 10.1016/0003-2697(89)90218-2. [DOI] [PubMed] [Google Scholar]
  5. Hardy M. R., Townsend R. R. Separation of positional isomers of oligosaccharides and glycopeptides by high-performance anion-exchange chromatography with pulsed amperometric detection. Proc Natl Acad Sci U S A. 1988 May;85(10):3289–3293. doi: 10.1073/pnas.85.10.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hase S., Ibuki T., Ikenaka T. Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem. 1984 Jan;95(1):197–203. doi: 10.1093/oxfordjournals.jbchem.a134585. [DOI] [PubMed] [Google Scholar]
  7. Hase S., Ikenaka T., Matsushima Y. Analyses of oligosaccharides by tagging the reducing end with a fluorescent compound. I. Application to glycoproteins. J Biochem. 1979 Apr;85(4):989–994. doi: 10.1093/oxfordjournals.jbchem.a132431. [DOI] [PubMed] [Google Scholar]
  8. Honda S., Iwase S., Makino A., Fujiwara S. Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complexes of N-2-pyridylglycamines. Anal Biochem. 1989 Jan;176(1):72–77. doi: 10.1016/0003-2697(89)90274-1. [DOI] [PubMed] [Google Scholar]
  9. Jackson P., Urwin V. E., Mackay C. D. Rapid imaging, using a cooled charge-coupled-device, of fluorescent two-dimensional polyacrylamide gels produced by labelling proteins in the first-dimensional isoelectric focusing gel with the fluorophore 2-methoxy-2,4-diphenyl-3(2H)furanone. Electrophoresis. 1988 Jul;9(7):330–339. doi: 10.1002/elps.1150090709. [DOI] [PubMed] [Google Scholar]
  10. Kobata A. Use of endo- and exoglycosidases for structural studies of glycoconjugates. Anal Biochem. 1979 Nov 15;100(1):1–14. doi: 10.1016/0003-2697(79)90102-7. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Maness N. O., Mort A. J. Separation and quantitation of galacturonic acid oligomers from 3 to over 25 residues in length by anion-exchange high-performance liquid chromatography. Anal Biochem. 1989 May 1;178(2):248–254. doi: 10.1016/0003-2697(89)90633-7. [DOI] [PubMed] [Google Scholar]
  13. McNeil M., Darvill A. G., Aman P., Franzén L. E., Albersheim P. Structural analysis of complex carbohydrates using high-performance liquid chromatography, gas chromatography, and mass spectrometry. Methods Enzymol. 1982;83:3–45. doi: 10.1016/0076-6879(82)83003-6. [DOI] [PubMed] [Google Scholar]
  14. Narasimhan S., Harpaz N., Longmore G., Carver J. P., Grey A. A., Schachter H. Control of glycoprotein synthesis. The purification by preparative high voltage paper electrophoresis in borate of glycopeptides containing high mannose and complex oligosaccharide chains linked to asparagine. J Biol Chem. 1980 May 25;255(10):4876–4884. [PubMed] [Google Scholar]
  15. Poretz R. D., Pieczenik G. Structural analysis of glycopeptides by polyacrylamide gel electrophoresis. Anal Biochem. 1981 Jul 15;115(1):170–176. doi: 10.1016/0003-2697(81)90541-8. [DOI] [PubMed] [Google Scholar]
  16. Prakash C., Vijay I. K. A new fluorescent tag for labeling of saccharides. Anal Biochem. 1983 Jan;128(1):41–46. doi: 10.1016/0003-2697(83)90341-x. [DOI] [PubMed] [Google Scholar]
  17. Rice K. G., Rottink M. K., Linhardt R. J. Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis. Biochem J. 1987 Jun 15;244(3):515–522. doi: 10.1042/bj2440515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tarentino A. L., Trimble R. B., Plummer T. H., Jr Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 1989;32:111–139. doi: 10.1016/s0091-679x(08)61169-3. [DOI] [PubMed] [Google Scholar]
  19. Tomiya N., Kurono M., Ishihara H., Tejima S., Endo S., Arata Y., Takahashi N. Structural analysis of N-linked oligosaccharides by a combination of glycopeptidase, exoglycosidases, and high-performance liquid chromatography. Anal Biochem. 1987 Jun;163(2):489–499. doi: 10.1016/0003-2697(87)90253-3. [DOI] [PubMed] [Google Scholar]
  20. Towbin H., Schoenenberger C. A., Braun D. G., Rosenfelder G. Chromogenic labeling of milk oligosaccharides: purification by affinity chromatography and structure determination. Anal Biochem. 1988 Aug 15;173(1):1–9. doi: 10.1016/0003-2697(88)90150-9. [DOI] [PubMed] [Google Scholar]
  21. Turnbull J. E., Gallagher J. T. Oligosaccharide mapping of heparan sulphate by polyacrylamide-gradient-gel electrophoresis and electrotransfer to nylon membrane. Biochem J. 1988 Apr 15;251(2):597–608. doi: 10.1042/bj2510597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wang W. T., LeDonne N. C., Jr, Ackerman B., Sweeley C. C. Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Anal Biochem. 1984 Sep;141(2):366–381. doi: 10.1016/0003-2697(84)90057-5. [DOI] [PubMed] [Google Scholar]
  23. Weitzman S., Scott V., Keegstra K. Analysis of glycopeptides as borate complexes by polyacrylamide gel electrophoresis. Anal Biochem. 1979 Sep 1;97(2):438–449. doi: 10.1016/0003-2697(79)90099-x. [DOI] [PubMed] [Google Scholar]
  24. Wenn R. V. The electrophoretic mobilities of 5-dimethylaminoaphthalene-1-suphonyl-glycopeptides and their relation molecular weight. Biochem J. 1975 Feb;145(2):281–285. doi: 10.1042/bj1450281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. al-Hakim A., Linhardt R. J. Isolation and recovery of acidic oligosaccharides from polyacrylamide gels by semi-dry electrotransfer. Electrophoresis. 1990 Jan;11(1):23–28. doi: 10.1002/elps.1150110106. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES