Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 15;270(3):815–820. doi: 10.1042/bj2700815

Recycling of glucosylceramide and sphingosine for the biosynthesis of gangliosides and sphingomyelin in rat liver.

M Trinchera 1, R Ghidoni 1, S Sonnino 1, G Tettamanti 1
PMCID: PMC1131806  PMID: 2241913

Abstract

It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis.

Full text

PDF
815

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acquotti D., Sonnino S., Masserini M., Casella L., Fronza G., Tettamanti G. A new chemical procedure for the preparation of gangliosides carrying fluorescent or paramagnetic probes on the lipid moiety. Chem Phys Lipids. 1986 May;40(1):71–86. doi: 10.1016/0009-3084(86)90063-0. [DOI] [PubMed] [Google Scholar]
  2. Cahan L. D., Irie R. F., Singh R., Cassidenti A., Paulson J. C. Identification of a human neuroectodermal tumor antigen (OFA-I-2) as ganglioside GD2. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7629–7633. doi: 10.1073/pnas.79.24.7629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dubois G., Zalc B., Le Saux F., Baumann N. Stearoyl[1-14C]sulfogalactosylsphingosine ([14C]sulfatide) as substrate for cerebroside sulfatase assay. Anal Biochem. 1980 Mar 1;102(2):313–317. doi: 10.1016/0003-2697(80)90159-1. [DOI] [PubMed] [Google Scholar]
  4. Gatt S. Enzymatic aspects of sphingolipid degradation. Chem Phys Lipids. 1970 Oct;5(1):235–249. doi: 10.1016/0009-3084(70)90021-6. [DOI] [PubMed] [Google Scholar]
  5. Ghidoni R., Riboni L., Tettamanti G. Metabolism of exogenous gangliosides in cerebellar granule cells, differentiated in culture. J Neurochem. 1989 Nov;53(5):1567–1574. doi: 10.1111/j.1471-4159.1989.tb08553.x. [DOI] [PubMed] [Google Scholar]
  6. Ghidoni R., Sonnino S., Chigorno V., Venerando B., Tettamanti G. Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver. Biochem J. 1983 Aug 1;213(2):321–329. doi: 10.1042/bj2130321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ghidoni R., Sonnino S., Masserini M., Orlando P., Tettamanti G. Specific tritium labeling of gangliosides at the 3-position of sphingosines. J Lipid Res. 1981 Nov;22(8):1286–1295. [PubMed] [Google Scholar]
  8. Ghidoni R., Trinchera M., Sonnino S., Chigorno V., Tettamanti G. The sialic acid residue of exogenous GM1 ganglioside is recycled for biosynthesis of sialoglycoconjugates in rat liver. Biochem J. 1987 Oct 1;247(1):157–164. doi: 10.1042/bj2470157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghidoni R., Trinchera M., Venerando B., Fiorilli A., Sonnino S., Tettamanti G. Incorporation and metabolism of exogenous GM1 ganglioside in rat liver. Biochem J. 1986 Jul 1;237(1):147–155. doi: 10.1042/bj2370147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grosse E., Kieda C., Nicolau C. Flow cytofluorometric investigation of the uptake by hepatocytes and spleen cells of targeted and untargeted liposomes injected intravenously into mice. Biochim Biophys Acta. 1984 Dec 11;805(4):354–361. doi: 10.1016/0167-4889(84)90018-1. [DOI] [PubMed] [Google Scholar]
  11. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  12. Hirabayashi Y., Hamaoka A., Matsumoto M., Nishimura K. An improved method for the separation of molecular species of cerebrosides. Lipids. 1986 Nov;21(11):710–714. doi: 10.1007/BF02537245. [DOI] [PubMed] [Google Scholar]
  13. Igarashi Y., Hakomori S., Toyokuni T., Dean B., Fujita S., Sugimoto M., Ogawa T., el-Ghendy K., Racker E. Effect of chemically well-defined sphingosine and its N-methyl derivatives on protein kinase C and src kinase activities. Biochemistry. 1989 Aug 22;28(17):6796–6800. doi: 10.1021/bi00443a002. [DOI] [PubMed] [Google Scholar]
  14. Ikezawa H., Mori M., Ohyabu T., Taguchi R. Studies on sphingomyelinase of Bacillus cereus. I. Purification and properties. Biochim Biophys Acta. 1978 Feb 27;528(2):247–256. [PubMed] [Google Scholar]
  15. Iwamori M., Moser H. W., Kishimoto Y. Specific tritium labeling of cerebrosides at the 3-positions of erythro-sphingosine and threo-sphingosine. J Lipid Res. 1975 Jul;16(4):332–336. [PubMed] [Google Scholar]
  16. Leskawa K. C., Dasgupta S., Chien J. L., Hogan E. L. A simplified procedure for the preparation of tritiated GM1 ganglioside and other glycosphingolipids. Anal Biochem. 1984 Jul;140(1):172–177. doi: 10.1016/0003-2697(84)90149-0. [DOI] [PubMed] [Google Scholar]
  17. Pentchev P. G., Gal A. E., Wong R., Morrone S., Neumeyer B., Massey J., Kanter R., Sawitsky A., Brady R. O. Biliary excretion of glycolipid in induced or inherited glucosylceramide lipidosis. Biochim Biophys Acta. 1981 Sep 24;665(3):615–618. doi: 10.1016/0005-2760(81)90279-4. [DOI] [PubMed] [Google Scholar]
  18. SVENNERHOLM L. THE GANGLIOSIDES. J Lipid Res. 1964 Apr;5:145–155. [PubMed] [Google Scholar]
  19. Sonderfeld S., Conzelmann E., Schwarzmann G., Burg J., Hinrichs U., Sandhoff K. Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem. 1985 Jun 3;149(2):247–255. doi: 10.1111/j.1432-1033.1985.tb08919.x. [DOI] [PubMed] [Google Scholar]
  20. Sonnino S., Ghidoni R., Gazzotti G., Kirschner G., Galli G., Tettamanti G. High performance liquid chromatography preparation of the molecular species of GM1 and GD1a gangliosides with homogeneous long chain base composition. J Lipid Res. 1984 Jun;25(6):620–629. [PubMed] [Google Scholar]
  21. Soriano P., Dijkstra J., Legrand A., Spanjer H., Londos-Gagliardi D., Roerdink F., Scherphof G., Nicolau C. Targeted and nontargeted liposomes for in vivo transfer to rat liver cells of a plasmid containing the preproinsulin I gene. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7128–7131. doi: 10.1073/pnas.80.23.7128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tettamanti G., Bonali F., Marchesini S., Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta. 1973 Jan 19;296(1):160–170. doi: 10.1016/0005-2760(73)90055-6. [DOI] [PubMed] [Google Scholar]
  23. Tokoro T., Gal A. E., Gallo L. L., Brady R. O. Studies of the pathogenesis of Gaucher's disease: tissue distribution and biliary excretion of [14C]L-glucosylceramide in rats. J Lipid Res. 1987 Aug;28(8):968–972. [PubMed] [Google Scholar]
  24. Trinchera M., Ghidoni R., Greggia L., Tettamanti G. The N-acetylgalactosamine residue of exogenous GM2 ganglioside is recycled for glycoconjugate biosynthesis in rat liver. Biochem J. 1990 Feb 15;266(1):103–106. doi: 10.1042/bj2660103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trinchera M., Wiesmann U., Pitto M., Acquotti D., Ghidoni R. Different metabolic recycling of the lipid components of exogenous sulphatide in human fibroblasts. Biochem J. 1988 Jun 1;252(2):375–379. doi: 10.1042/bj2520375. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES