Abstract
Brain tubulin polymerized with dynein isolated from bull spermatozoa forms cold-stable microtubules, in contrast with microtubules made of brain tubulin polymerized by brain microtubule-associated proteins (MAPs). The level of cold-stable microtubules depends on the concentration of dynein used. Addition of dynein to cold-unstable microtubules renders these microtubules stable to cold. Although ATP and a non-hydrolysable ATP analogue increase the formation of microtubules made of tubulin and dynein, these nucleotides have no effect on dynein cold-stabilizing properties. The data suggests that a new factor, not involving the dynein ATPase active site and present in bull sperm dynein preparations, confers cold-stability to microtubules.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
- Belles-Isles M., Chapeau C., White D., Gagnon C. Isolation and characterization of dynein ATPase from bull spermatozoa. Biochem J. 1986 Dec 15;240(3):863–869. doi: 10.1042/bj2400863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binet S., Meininger V. Biochemical basis of microtubule cold stability in the peripheral and central nervous systems. Brain Res. 1988 May 31;450(1-2):231–236. doi: 10.1016/0006-8993(88)91562-4. [DOI] [PubMed] [Google Scholar]
- Eyer J., White D., Gagnon C. Bull sperm 19S dynein polymerizes brain tubulin into microtubules. Biochem Biophys Res Commun. 1987 Oct 14;148(1):218–224. doi: 10.1016/0006-291x(87)91098-9. [DOI] [PubMed] [Google Scholar]
- Farrell K. W., Kassis J. A., Wilson L. Outer doublet tubulin reassembly: evidence for opposite end assembly-disassembly at steady state and a disassembly end equilibrium. Biochemistry. 1979 Jun 12;18(12):2642–2647. doi: 10.1021/bi00579a033. [DOI] [PubMed] [Google Scholar]
- Farrell K. W., Morse A., Wilson L. Characterization of the in vitro reassembly of tubulin derived from stable Strongylocentrotus purpuratus outer doublet microtubules. Biochemistry. 1979 Mar 6;18(5):905–911. doi: 10.1021/bi00572a027. [DOI] [PubMed] [Google Scholar]
- Gagnon C. Extraction and properties of dyneins from bull spermatozoa. Methods Enzymol. 1986;134:318–324. doi: 10.1016/0076-6879(86)34099-0. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Job D., Rauch C. T., Fischer E. H., Margolis R. L. Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry. 1982 Feb 2;21(3):509–515. doi: 10.1021/bi00532a015. [DOI] [PubMed] [Google Scholar]
- Job D., Rauch C. T., Margolis R. L. High concentrations of STOP protein induce a microtubule super-stable state. Biochem Biophys Res Commun. 1987 Oct 14;148(1):429–434. doi: 10.1016/0006-291x(87)91129-6. [DOI] [PubMed] [Google Scholar]
- Margolis R. L., Rauch C. T. Characterization of rat brain crude extract microtubule assembly: correlation of cold stability with the phosphorylation state of a microtubule-associated 64K protein. Biochemistry. 1981 Jul 21;20(15):4451–4458. doi: 10.1021/bi00518a033. [DOI] [PubMed] [Google Scholar]
- Margolis R. L., Rauch C. T., Job D. Purification and assay of a 145-kDa protein (STOP145) with microtubule-stabilizing and motility behavior. Proc Natl Acad Sci U S A. 1986 Feb;83(3):639–643. doi: 10.1073/pnas.83.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
- Pabion M., Job D., Margolis R. L. Sliding of STOP proteins on microtubules. Biochemistry. 1984 Dec 18;23(26):6642–6648. doi: 10.1021/bi00321a055. [DOI] [PubMed] [Google Scholar]
- Pirollet F., Rauch C. T., Job D., Margolis R. L. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts. Biochemistry. 1989 Jan 24;28(2):835–842. doi: 10.1021/bi00428a064. [DOI] [PubMed] [Google Scholar]
- Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Webb B. C., Wilson L. Cold-stable microtubules from brain. Biochemistry. 1980 Apr 29;19(9):1993–2001. doi: 10.1021/bi00550a041. [DOI] [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
