Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Dec 15;288(Pt 3):727–732. doi: 10.1042/bj2880727

The control of cellular shape and motility. Mg2+ and tropomyosin regulate the formation and the dissociation of microfilament bundles.

E Grazi 1, P Cuneo 1, A Cataldi 1
PMCID: PMC1131946  PMID: 1471985

Abstract

At pH 7.14 and 37 degrees C, in 7.2% (w/v) poly(ethylene glycol) 6000, tropomyosin-regulated actin filaments are converted into filament bundles by increasing the free Mg2+ concentration to 1.7-2.0 mM. When free Mg2+ concentration is decreased below 1.7 mM, bundles dissociate back into tropomyosin-regulated actin filaments. Pure actin filaments are insensitive to this mechanism of control and are found as filament bundles in all the range of free Mg2+ concentrations tested (1.37-2.2 mM). The mechanism of regulation described above is likely to operate in the cell, where the concentration of free Mg2+ is linked to the energy charge of the adenine nucleotide system.

Full text

PDF
727

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberty R. A. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate. J Biol Chem. 1968 Apr 10;243(7):1337–1343. [PubMed] [Google Scholar]
  2. Blatter L. A., McGuigan J. A. Free intracellular magnesium concentration in ferret ventricular muscle measured with ion selective micro-electrodes. Q J Exp Physiol. 1986 Jul;71(3):467–473. doi: 10.1113/expphysiol.1986.sp003005. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Bretscher A. Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J Biol Chem. 1984 Oct 25;259(20):12873–12880. [PubMed] [Google Scholar]
  5. Bähler M., Greengard P. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature. 1987 Apr 16;326(6114):704–707. doi: 10.1038/326704a0. [DOI] [PubMed] [Google Scholar]
  6. Carlsson L., Markey F., Blikstad I., Persson T., Lindberg U. Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6376–6380. doi: 10.1073/pnas.76.12.6376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cittadini A., Scarpa A. Intracellular Mg2+ homeostasis of Ehrlich ascites tumor cells. Arch Biochem Biophys. 1983 Nov;227(1):202–209. doi: 10.1016/0003-9861(83)90363-6. [DOI] [PubMed] [Google Scholar]
  8. Collins J. H., Elzinga M. The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence. J Biol Chem. 1975 Aug 10;250(15):5915–5920. [PubMed] [Google Scholar]
  9. Cuneo P., Magri E., Verzola A., Grazi E. 'Macromolecular crowding' is a primary factor in the organization of the cytoskeleton. Biochem J. 1992 Jan 15;281(Pt 2):507–512. doi: 10.1042/bj2810507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fry C. H. Measurement and control of intracellular magnesium ion concentration in guinea pig and ferret ventricular myocardium. Magnesium. 1986;5(5-6):306–316. [PubMed] [Google Scholar]
  11. Gabbiani G., Gabbiani F., Lombardi D., Schwartz S. M. Organization of actin cytoskeleton in normal and regenerating arterial endothelial cells. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2361–2364. doi: 10.1073/pnas.80.8.2361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon D. J., Yang Y. Z., Korn E. D. Polymerization of Acanthamoeba actin. Kinetics, thermodynamics, and co-polymerization with muscle actin. J Biol Chem. 1976 Dec 10;251(23):7474–7479. [PubMed] [Google Scholar]
  13. Grazi E., Magri E., Cuneo P., Cataldi A. The control of cellular motility and the role of gelsolin. FEBS Lett. 1991 Dec 16;295(1-3):163–166. doi: 10.1016/0014-5793(91)81409-2. [DOI] [PubMed] [Google Scholar]
  14. Grazi E., Trombetta G. Evidence that unphosphorylated smooth muscle myosin supports smooth muscle contraction. Biochem Biophys Res Commun. 1991 Aug 15;178(3):967–973. doi: 10.1016/0006-291x(91)90986-h. [DOI] [PubMed] [Google Scholar]
  15. Grazi E., Trombetta G., Guidoboni M. Divergent effects of filamin and tropomyosin on actin filaments bundling. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1109–1114. doi: 10.1016/0006-291x(90)90637-3. [DOI] [PubMed] [Google Scholar]
  16. Grazi E., Trombetta G., Magri E., Cuneo P. The actin gelling activity of chicken gizzard alpha-actinin at physiological temperature is triggered by water sequestration. FEBS Lett. 1990 Oct 15;272(1-2):149–151. doi: 10.1016/0014-5793(90)80470-4. [DOI] [PubMed] [Google Scholar]
  17. Gupta R. K., Gupta P., Yushok W. D., Rose Z. B. Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun. 1983 Nov 30;117(1):210–216. doi: 10.1016/0006-291x(83)91562-0. [DOI] [PubMed] [Google Scholar]
  18. Holmsen H., Day H. J., Setkowsky C. A. Secretory mechanisms. Behaviour of adenine nucleotides during the platelet release reaction induced by adenosine diphosphate and adrenaline. Biochem J. 1972 Aug;129(1):67–82. doi: 10.1042/bj1290067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Husain-Chishti A., Levin A., Branton D. Abolition of actin-bundling by phosphorylation of human erythrocyte protein 4.9. Nature. 1988 Aug 25;334(6184):718–721. doi: 10.1038/334718a0. [DOI] [PubMed] [Google Scholar]
  20. Ikebuchi N. W., Waisman D. M. Calcium-dependent regulation of actin filament bundling by lipocortin-85. J Biol Chem. 1990 Feb 25;265(6):3392–3400. [PubMed] [Google Scholar]
  21. Ishii Y., Lehrer S. S. Fluorescence studies of the conformation of pyrene-labeled tropomyosin: effects of F-actin and myosin subfragment 1. Biochemistry. 1985 Nov 5;24(23):6631–6638. doi: 10.1021/bi00344a050. [DOI] [PubMed] [Google Scholar]
  22. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  23. Izzard C. S., Lochner L. R. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J Cell Sci. 1980 Apr;42:81–116. doi: 10.1242/jcs.42.1.81. [DOI] [PubMed] [Google Scholar]
  24. MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
  25. Murphy E., Freudenrich C. C., Levy L. A., London R. E., Lieberman M. Monitoring cytosolic free magnesium in cultured chicken heart cells by use of the fluorescent indicator Furaptra. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2981–2984. doi: 10.1073/pnas.86.8.2981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  27. Pribluda V., Laub F., Rotman A. The state of actin in activated human platelets. Eur J Biochem. 1981 May 15;116(2):293–296. doi: 10.1111/j.1432-1033.1981.tb05332.x. [DOI] [PubMed] [Google Scholar]
  28. Pribluda V., Rotman A. Dynamics of membrane-cytoskeleton interactions in activated blood platelets. Biochemistry. 1982 Jun 8;21(12):2825–2832. doi: 10.1021/bi00541a003. [DOI] [PubMed] [Google Scholar]
  29. Silverman J. A., Mehta J., Brocher S., Amenta J. S. Analytical errors in measuring radioactivity in cell proteins and their effect on estimates of protein turnover in L cells. Biochem J. 1985 Mar 1;226(2):361–368. doi: 10.1042/bj2260361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sobue K., Morimoto K., Kanda K., Maruyama K., Kakiuchi S. Reconstitution of Ca2+-sensitive gelation of actin filaments with filamin, caldesmon and calmodulin. FEBS Lett. 1982 Feb 22;138(2):289–292. doi: 10.1016/0014-5793(82)80463-8. [DOI] [PubMed] [Google Scholar]
  31. Sobue K., Muramoto Y., Fujita M., Kakiuchi S. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5652–5655. doi: 10.1073/pnas.78.9.5652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  33. Stoscheck C. M. Increased uniformity in the response of the coomassie blue G protein assay to different proteins. Anal Biochem. 1990 Jan;184(1):111–116. doi: 10.1016/0003-2697(90)90021-z. [DOI] [PubMed] [Google Scholar]
  34. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  35. Suzuki A., Yamazaki M., Ito T. Osmoelastic coupling in biological structures: formation of parallel bundles of actin filaments in a crystalline-like structure caused by osmotic stress. Biochemistry. 1989 Jul 25;28(15):6513–6518. doi: 10.1021/bi00441a052. [DOI] [PubMed] [Google Scholar]
  36. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  37. Wegner A. Equilibrium of the actin-tropomyosin interaction. J Mol Biol. 1979 Jul 15;131(4):839–853. doi: 10.1016/0022-2836(79)90204-3. [DOI] [PubMed] [Google Scholar]
  38. Wu S. T., Pieper G. M., Salhany J. M., Eliot R. S. Measurement of free magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 nuclear magnetic resonance and multiequilibria analysis. Biochemistry. 1981 Dec 22;20(26):7399–7403. doi: 10.1021/bi00529a012. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES