Abstract
Angiotensin converting enzyme (ACE; EC 3.4.15.1) was purified from porcine kidney and lung (endothelial isoenzyme) and testis (testicular isoenzyme) by affinity chromatography on lisinopril-2.8 nm-Sepharose. Atomic-absorption spectroscopy revealed that ACE purified from kidney and lung contained 2.58 and 2.35 atoms of zinc per molecule of enzyme (M(r) 147,000) respectively. In contrast, ACE purified from testis contained only 1.58 atoms of zinc per molecule of enzyme (M(r) 80,000). Thus it would appear that both putative zinc-binding sites in endothelial ACE contain zinc and may therefore be catalytically active. No differences were observed in the pattern of products generated on hydrolysis of benzoyl (Bz)-Gly-His-Leu, substance P, luteinizing-hormone-releasing hormone (LH-RH) and its analogue, des-Gly10-LH-RH-ethylamide, by kidney and testicular ACE. There was also no difference in the initial rates of hydrolysis of Bz-Gly-His-Leu or substance P by the two isoenzymes, although LH-RH and its analogue were hydrolysed twice as rapidly by kidney ACE. It is therefore unlikely that the N-terminal catalytic site in porcine endothelial ACE is predominantly responsible for the atypical cleavage of LH-RH generating the N-terminal tripeptide. Two polyclonal antisera were raised to the affinity-purified forms of pig kidney and testicular ACE. Isoenzyme-specific antisera were then isolated from these by absorbing out those antibodies recognizing determinants on the other isoenzyme. Immunoelectrophoretic blot analyses and immunofluorescent staining of sections of pig kidney were used to demonstrate the specificity of the antisera. Immunofluorescent staining of sections of pig testis with the antiserum specific to testicular ACE localized testicular ACE solely to the lumen of the seminiferous tubules, whereas the antiserum specific to endothelial ACE revealed the presence of this isoenzyme only in blood vessels. The antiserum to endothelial ACE, which recognizes determinants in the unique N-terminal domain, was investigated as a possible specific inhibitor of the N-terminal catalytic site. Although this antiserum failed to inhibit testicular ACE, the effect on the activity of endothelial ACE appeared to be due to inhibition of both the N- and C-terminal catalytic sites.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams W. B., Davies R. O., Ferguson R. K. Overview: the role of angiotensin-converting enzyme inhibitors in cardiovascular therapy. Fed Proc. 1984 Apr;43(5):1314–1321. [PubMed] [Google Scholar]
- Armstrong D. J., Mukhopadhyay S. K., Campbell B. J. Physicochemical characterization of renal dipeptidase. Biochemistry. 1974 Apr 9;13(8):1745–1750. doi: 10.1021/bi00705a029. [DOI] [PubMed] [Google Scholar]
- Barnes K., Matsas R., Hooper N. M., Turner A. J., Kenny A. J. Endopeptidase-24.11 is striosomally ordered in pig brain and, in contrast to aminopeptidase N and peptidyl dipeptidase A ('angiotensin converting enzyme'), is a marker for a set of striatal efferent fibres. Neuroscience. 1988 Dec;27(3):799–817. doi: 10.1016/0306-4522(88)90184-4. [DOI] [PubMed] [Google Scholar]
- Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
- Berg T., Sulner J., Lai C. Y., Soffer R. L. Immunohistochemical localization of two angiotensin I-converting isoenzymes in the reproductive tract of the male rabbit. J Histochem Cytochem. 1986 Jun;34(6):753–760. doi: 10.1177/34.6.3009604. [DOI] [PubMed] [Google Scholar]
- Bernstein K. E., Martin B. M., Edwards A. S., Bernstein E. A. Mouse angiotensin-converting enzyme is a protein composed of two homologous domains. J Biol Chem. 1989 Jul 15;264(20):11945–11951. [PubMed] [Google Scholar]
- Brentjens J. R., Matsuo S., Andres G. A., Caldwell P. R., Zamboni L. Gametes contain angiotensin converting enzyme (kininase II). Experientia. 1986 Apr 15;42(4):399–402. doi: 10.1007/BF02118626. [DOI] [PubMed] [Google Scholar]
- Bünning P., Holmquist B., Riordan J. F. Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry. 1983 Jan 4;22(1):103–110. doi: 10.1021/bi00270a015. [DOI] [PubMed] [Google Scholar]
- Bünning P., Riordan J. F. The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism. J Inorg Biochem. 1985 Jul;24(3):183–198. doi: 10.1016/0162-0134(85)85002-9. [DOI] [PubMed] [Google Scholar]
- Chen Y. N., Riordan J. F. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site. Biochemistry. 1990 Nov 20;29(46):10493–10498. doi: 10.1021/bi00498a011. [DOI] [PubMed] [Google Scholar]
- Cushman D. W., Ondetti M. A. Inhibitors of angiotensin-converting enzyme for treatment of hypertension. Biochem Pharmacol. 1980 Jul 1;29(13):1871–1877. doi: 10.1016/0006-2952(80)90096-9. [DOI] [PubMed] [Google Scholar]
- Danilov S. M., Faerman A. I., Printseva OYu, Martynov A. V., Sakharov IYu, Trakht I. N. Immunohistochemical study of angiotensin-converting enzyme in human tissues using monoclonal antibodies. Histochemistry. 1987;87(5):487–490. doi: 10.1007/BF00496822. [DOI] [PubMed] [Google Scholar]
- Das M., Soffer R. L. Pulmonary angiotensin-converting enzyme. Structural and catalytic properties. J Biol Chem. 1975 Sep 10;250(17):6762–6768. [PubMed] [Google Scholar]
- Defendini R., Zimmerman E. A., Weare J. A., Alhenc-Gelas F., Erdös E. G. Angiotensin-converting enzyme in epithelial and neuroepithelial cells. Neuroendocrinology. 1983 Jul;37(1):32–40. doi: 10.1159/000123512. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Fox E. A., Strydom D. J., Riordan J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehlers M. R., Maeder D. L., Kirsch R. E. Rapid affinity chromatographic purification of human lung and kidney angiotensin-converting enzyme with the novel N-carboxyalkyl dipeptide inhibitor N-[1(S)-carboxy-5-aminopentyl]glycylglycine. Biochim Biophys Acta. 1986 Sep 4;883(2):361–372. doi: 10.1016/0304-4165(86)90329-6. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry. 1989 Jun 27;28(13):5311–5318. doi: 10.1021/bi00439a001. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Riordan J. F. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry. 1991 Jul 23;30(29):7118–7126. doi: 10.1021/bi00243a012. [DOI] [PubMed] [Google Scholar]
- El-Dorry H. A., Bull H. G., Iwata K., Thornberry N. A., Cordes E. H., Soffer R. L. Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase. J Biol Chem. 1982 Dec 10;257(23):14128–14133. [PubMed] [Google Scholar]
- Gee N. S., Matsas R., Kenny A. J. A monoclonal antibody to kidney endopeptidase-24.11. Its application in immunoadsorbent purification of the enzyme and immunofluorescent microscopy of kidney and intestine. Biochem J. 1983 Aug 15;214(2):377–386. doi: 10.1042/bj2140377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M. Angiotensin converting enzyme: implications from molecular biology for its physiological functions. Int J Biochem. 1991;23(7-8):641–647. doi: 10.1016/0020-711x(91)90032-i. [DOI] [PubMed] [Google Scholar]
- Hooper N. M., Keen J. N., Turner A. J. Characterization of the glycosyl-phosphatidylinositol-anchored human renal dipeptidase reveals that it is more extensively glycosylated than the pig enzyme. Biochem J. 1990 Jan 15;265(2):429–433. doi: 10.1042/bj2650429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Keen J., Pappin D. J., Turner A. J. Pig kidney angiotensin converting enzyme. Purification and characterization of amphipathic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J. 1987 Oct 1;247(1):85–93. doi: 10.1042/bj2470085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hooper N. M., Turner A. J. Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism. Biochem J. 1987 Feb 1;241(3):625–633. doi: 10.1042/bj2410625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar R. S., Kusari J., Roy S. N., Soffer R. L., Sen G. C. Structure of testicular angiotensin-converting enzyme. A segmental mosaic isozyme. J Biol Chem. 1989 Oct 5;264(28):16754–16758. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lanzillo J. J., Stevens J., Dasarathy Y., Yotsumoto H., Fanburg B. L. Angiotensin-converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J Biol Chem. 1985 Dec 5;260(28):14938–14944. [PubMed] [Google Scholar]
- Lattion A. L., Soubrier F., Allegrini J., Hubert C., Corvol P., Alhenc-Gelas F. The testicular transcript of the angiotensin I-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme. FEBS Lett. 1989 Jul 31;252(1-2):99–104. doi: 10.1016/0014-5793(89)80897-x. [DOI] [PubMed] [Google Scholar]
- Matsas R., Kenny A. J., Turner A. J. An immunohistochemical study of endopeptidase-24.11 ("enkephalinase") in the pig nervous system. Neuroscience. 1986 Aug;18(4):991–1012. doi: 10.1016/0306-4522(86)90113-2. [DOI] [PubMed] [Google Scholar]
- Mendelsohn F. A. Localization of angiotensin converting enzyme in rat forebrain and other tissues by in vitro autoradiography using 125I-labelled MK351A. Clin Exp Pharmacol Physiol. 1984 Jul-Aug;11(4):431–435. doi: 10.1111/j.1440-1681.1984.tb00294.x. [DOI] [PubMed] [Google Scholar]
- Patchett A. A., Cordes E. H. The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin-converting enzyme. Adv Enzymol Relat Areas Mol Biol. 1985;57:1–84. doi: 10.1002/9780470123034.ch1. [DOI] [PubMed] [Google Scholar]
- Rached E., Hooper N. M., James P., Semenza G., Turner A. J., Mantei N. cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J. 1990 Nov 1;271(3):755–760. doi: 10.1042/bj2710755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Relton J. M., Gee N. S., Matsas R., Turner A. J., Kenny A. J. Purification of endopeptidase-24.11 ('enkephalinase') from pig brain by immunoadsorbent chromatography. Biochem J. 1983 Dec 1;215(3):519–523. doi: 10.1042/bj2150519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz W. W., Hagler H. K., Buja L. M., Erdös E. G. Ultrastructural localization of angiotensin I-converting enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubule of the human kidney. Lab Invest. 1988 Dec;59(6):789–797. [PubMed] [Google Scholar]
- Skidgel R. A., Erdös E. G. Novel activity of human angiotensin I converting enzyme: release of the NH2- and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1025–1029. doi: 10.1073/pnas.82.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soffer R. L. Angiotensin-converting enzyme and the regulation of vasoactive peptides. Annu Rev Biochem. 1976;45:73–94. doi: 10.1146/annurev.bi.45.070176.000445. [DOI] [PubMed] [Google Scholar]
- Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter S. M., Snyder S. H. Angiotensin-converting enzyme in the male rat reproductive system: autoradiographic visualization with [3H]captopril. Endocrinology. 1984 Dec;115(6):2332–2341. doi: 10.1210/endo-115-6-2332. [DOI] [PubMed] [Google Scholar]
- Strittmatter S. M., Thiele E. A., De Souza E. B., Snyder S. H. Angiotensin-converting enzyme in the testis and epididymis: differential development and pituitary regulation of isozymes. Endocrinology. 1985 Oct;117(4):1374–1379. doi: 10.1210/endo-117-4-1374. [DOI] [PubMed] [Google Scholar]
- Velletri P. A. Testicular angiotensin I-converting enzyme (E.C. 3.4.15.1). Life Sci. 1985 Apr 29;36(17):1597–1608. doi: 10.1016/0024-3205(85)90362-5. [DOI] [PubMed] [Google Scholar]
- Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
- Yokosawa H., Endo S., Ogura Y., Ishii S. A new feature of angiotensin-converting enzyme in the brain: hydrolysis of substance P. Biochem Biophys Res Commun. 1983 Oct 31;116(2):735–742. doi: 10.1016/0006-291x(83)90586-7. [DOI] [PubMed] [Google Scholar]
- Yotsumoto H., Sato S., Shibuya M. Localization of angiotensin converting enzyme (dipeptidyl carboxypeptidase) in swine sperm by immunofluorescence. Life Sci. 1984 Sep 17;35(12):1257–1261. doi: 10.1016/0024-3205(84)90096-1. [DOI] [PubMed] [Google Scholar]




