Abstract
The temperature dependence and specificity of transfer of membrane constituents from donor transitional endoplasmic reticulum to the cis Golgi apparatus were investigated using a cell-free system from rat liver. The radiolabelled transitional endoplasmic reticulum donors were prepared from slices of rat liver prelabelled with [14C]leucine. The acceptor Golgi apparatus elements were unlabelled and immobilized on nitrocellulose. When Golgi apparatus stacks were separated by preparative free-flow electrophoresis into subfractions enriched in cisternae derived from the cis, medial and trans portions of the stack respectively, efficient specific transfer was observed only to cis elements. Trans elements were devoid of specific acceptor capacity. Similarly, when transfer was determined as a function of temperature, a transition was observed in transfer activity between 12 degrees C and 18 degrees C similar to that seen in vivo for formation of the so-called 16 degrees C cis Golgi-located membrane compartment. Transfer at temperatures below 16 degrees C and transfer to trans Golgi apparatus compartments at temperatures either above or below 16 degrees C was similar and unspecific. The unspecific transfer at low temperature was pH independent, whereas specific transfer was greatest at the physiological pH of 7, and was reduced to 10% and 18% of that occurring at pH 8 and pH 5.5 respectively. These findings show that the cell-free system derived from rat liver exhibits a high degree of fidelity to transfer in vivo, an efficiency approaching that observed in vivo, and a nearly absolute acceptor specificity for cis Golgi apparatus. The acceptor-, temperature- and pH-specificity of the cell-free transfer, as well as the saturation kinetics exhibited with respect to acceptor Golgi apparatus, support the concept of transition-vesicle-specific docking sites of finite number associated with cis Golgi apparatus cisternae.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckers C. J., Keller D. S., Balch W. E. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 1987 Aug 14;50(4):523–534. doi: 10.1016/0092-8674(87)90025-0. [DOI] [PubMed] [Google Scholar]
- Brightman A. O., Navas P., Minnifield N. M., Morré D. J. Pyrophosphate-induced acidification of trans cisternal elements of rat liver Golgi apparatus. Biochim Biophys Acta. 1992 Feb 17;1104(1):188–194. doi: 10.1016/0005-2736(92)90149-g. [DOI] [PubMed] [Google Scholar]
- Brown W. J., Constantinescu E., Farquhar M. G. Redistribution of mannose-6-phosphate receptors induced by tunicamycin and chloroquine. J Cell Biol. 1984 Jul;99(1 Pt 1):320–326. doi: 10.1083/jcb.99.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEND D. S., MURRAY M. J. OSMIUM IMPREGNATION OF THE GOLGI APPARATUS. Am J Anat. 1965 Jul;117:135–149. doi: 10.1002/aja.1001170109. [DOI] [PubMed] [Google Scholar]
- Fries E., Lindström I. The effects of low temperatures on intracellular transport of newly synthesized albumin and haptoglobin in rat hepatocytes. Biochem J. 1986 Jul 1;237(1):33–39. doi: 10.1042/bj2370033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartel-Schenk S., Minnifield N., Reutter W., Hanski C., Bauer C., Morré D. J. Distribution of glycosyltransferases among Golgi apparatus subfractions from liver and hepatomas of the rat. Biochim Biophys Acta. 1991 Dec 6;1115(2):108–122. doi: 10.1016/0304-4165(91)90019-d. [DOI] [PubMed] [Google Scholar]
- Haselbeck A., Schekman R. Interorganelle transfer and glycosylation of yeast invertase in vitro. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2017–2021. doi: 10.1073/pnas.83.7.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K. V., Doller E. W., Sturman L. S. Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology. 1981 Dec;115(2):334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelsema C. L., Morré D. J. Distribution of phospholipid biosynthetic enzymes among cell components of rat liver. J Biol Chem. 1978 Nov 10;253(21):7960–7971. [PubMed] [Google Scholar]
- Matyas G. R., Morré D. J. Coupling of uridine-5'-diphosphate (UDP) formation and nicotinamide adenine dinucleotide (NAD+) reduction for cytochemical localization of glycosyltransferases. J Histochem Cytochem. 1983 Oct;31(10):1175–1182. doi: 10.1177/31.10.6411803. [DOI] [PubMed] [Google Scholar]
- Morré D. J., Cheetham R. D., Nyquist S. E. A simplified procedure for isolation of golgi apparatus from rat liver. Prep Biochem. 1972;2(1):61–69. doi: 10.1080/00327487208061453. [DOI] [PubMed] [Google Scholar]
- Morré D. J., Kartenbeck J., Franke W. W. Membrane flow and intercoversions among endomembranes. Biochim Biophys Acta. 1979 Apr 23;559(1):71–52. doi: 10.1016/0304-4157(79)90008-x. [DOI] [PubMed] [Google Scholar]
- Morré D. J., Minnifield N., Paulik M. Identification of the 16 degrees C compartment of the endoplasmic reticulum in rat liver and cultured hamster kidney cells. Biol Cell. 1989;67(1):51–60. doi: 10.1111/j.1768-322X.1989.tb03009.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morré D. J., Morré D. M., Heidrich H. G. Subfractionation of rat liver Golgi apparatus by free-flow electrophoresis. Eur J Cell Biol. 1983 Sep;31(2):263–274. [PubMed] [Google Scholar]
- Morré D. J., Morré D. M., Mollenhauer H. H., Reutter W. Golgi apparatus cisternae of monensin-treated cells accumulate in the cytoplasm of liver slices. Eur J Cell Biol. 1987 Apr;43(2):235–242. [PubMed] [Google Scholar]
- Morré D. M., Morré D. J., Bowen S., Reutter W., Windel K. Vitamin A excess alters membrane flow in rat liver. Eur J Cell Biol. 1988 Jun;46(2):307–315. [PubMed] [Google Scholar]
- Navas P., Minnifield N., Sun I., Morré D. J. NADP phosphatase as a marker in free-flow electrophoretic separations for cisternae of the Golgi apparatus midregion. Biochim Biophys Acta. 1986 Mar 19;881(1):1–9. doi: 10.1016/0304-4165(86)90089-9. [DOI] [PubMed] [Google Scholar]
- Nowack D. D., Morré D. M., Paulik M., Keenan T. W., Morré D. J. Intracellular membrane flow: reconstitution of transition vesicle formation and function in a cell-free system. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6098–6102. doi: 10.1073/pnas.84.17.6098. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nowack D. D., Paulik M., Morré D. J., Morré D. M. Retinoid modulation of cell-free membrane transfer between endoplasmic reticulum and Golgi apparatus. Biochim Biophys Acta. 1990 Mar 9;1051(3):250–258. doi: 10.1016/0167-4889(90)90130-6. [DOI] [PubMed] [Google Scholar]
- Paulik M., Nowack D. D., Morré D. J. Isolation of a vesicular intermediate in the cell-free transfer of membrane from transitional elements of the endoplasmic reticulum to Golgi apparatus cisternae of rat liver. J Biol Chem. 1988 Nov 25;263(33):17738–17748. [PubMed] [Google Scholar]
- Roth J., Berger E. G. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae. J Cell Biol. 1982 Apr;93(1):223–229. doi: 10.1083/jcb.93.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saraste J., Kuismanen E. Pre- and post-Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell. 1984 Sep;38(2):535–549. doi: 10.1016/0092-8674(84)90508-7. [DOI] [PubMed] [Google Scholar]
- Saraste J., Palade G. E., Farquhar M. G. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6425–6429. doi: 10.1073/pnas.83.17.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simons K., Virta H. Perforated MDCK cells support intracellular transport. EMBO J. 1987 Aug;6(8):2241–2247. doi: 10.1002/j.1460-2075.1987.tb02496.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Tartakoff A. M. Temperature and energy dependence of secretory protein transport in the exocrine pancreas. EMBO J. 1986 Jul;5(7):1477–1482. doi: 10.1002/j.1460-2075.1986.tb04385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Tooze S., Warren G. Replication of coronavirus MHV-A59 in sac- cells: determination of the first site of budding of progeny virions. Eur J Cell Biol. 1984 Mar;33(2):281–293. [PubMed] [Google Scholar]
- ZEIGEL R. F., DALTON A. J. Speculations based on the morphology of the Golgi systems in several types of proteinsecreting cells. J Cell Biol. 1962 Oct;15:45–54. doi: 10.1083/jcb.15.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]

