Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Dec 15;288(Pt 3):987–996. doi: 10.1042/bj2880987

Expression of high levels of nitrobenzylthioinosine-sensitive nucleoside transport in cultured human choriocarcinoma (BeWo) cells.

C E Boumah 1, D L Hogue 1, C E Cass 1
PMCID: PMC1131985  PMID: 1472012

Abstract

We have examined binding of [3H]nitrobenzylthioinosine (NBMPR) and influx of [3H]thymidine in adherent cultures of human choriocarcinoma (BeWo) cells and, for comparison, cervical-carcinoma (HeLa) cells. Specific association of NBMPR with BeWo cells at 22 degrees C required 1.5 h to reach an equilibrium between free and bound ligand, whereas association with HeLa cells required 20-30 min. Scatchard analysis of NBMPR binding to low-density cultures of BeWo cells revealed a total of 27 x 10(6) sites per cell, consisting of two distinct populations that differed in their affinities for NBMPR. One population bound NBMPR with 'high' affinity (Bmax.1 15.0 pmol/10(6) cells; Kd1 0.6 nM) and the other, larger, population bound NBMPR with 'low' affinity (Bmax.2 29.0 pmol/10(6) cells; Kd2 14.5 nM). By contrast, HeLa cells possessed only 4.1 x 10(5) sites per cell, and these sites all bound NBMPR with the same affinity (Bmax. 0.7 pmol/10(6) cells; Kd 0.5 nM). Interaction of NBMPR with both populations of sites in BeWo cells could be blocked by nitrobenzylthioguanosine (NBTGR), dilazep or dipyridamole. Concentration-effect relationships for dilazep inhibition of binding of 1 nM- and 25 nM-NBMPR to BeWo cells were monophasic, with virtually complete inhibition achieved at 0.1 microM and 1 microM respectively. Plasma-membrane preparations from BeWo cells also had high numbers of NBMPR-binding sites, and u.v. irradiation of site-bound [3H]NBMPR in such preparations labelled polypeptides that migrated in electrophoretograms as a broad band with a peak M(r) of 60,000. The concentration-effect relationship for NBMPR inhibition of thymidine transport by BeWo cells was biphasic, with an IC50 for inhibition of the 'NBMPR-sensitive' component of 1.6 nM and a substantial (15-20%) component of flux that was not inhibited by 10 microM-NBMPR and was thus 'NBMPR-insensitive'. Vmax. values for thymidine transport by BeWo cells were 20-30-fold larger than the corresponding values for transport by HeLa cells. Elimination of the Na+ gradient had no effect on initial rates of thymidine fluxes measured in either the presence or the absence of NBMPR. Our results demonstrate that BeWo cells have an unusually large capacity for NBMPR-sensitive nucleoside transport, apparently resulting from high levels of expression of 'erythrocyte-like' transport elements, identified by their high-affinity interaction with NBMPR. The relationship of the low-affinity binding sites to NBMPR-sensitive transporter elements is uncertain.

Full text

PDF
987

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agbanyo F. R., Cass C. E., Paterson A. R. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine. Mol Pharmacol. 1988 Mar;33(3):332–337. [PubMed] [Google Scholar]
  2. Almeida A. F., Jarvis S. M., Young J. D., Paterson A. R. Photoaffinity labelling of the nucleoside transporter of cultured mouse lymphoma cells. FEBS Lett. 1984 Oct 29;176(2):444–448. doi: 10.1016/0014-5793(84)81215-6. [DOI] [PubMed] [Google Scholar]
  3. Barros L. F., Bustamante J. C., Yudilevich D. L., Jarvis S. M. Adenosine transport and nitrobenzylthioinosine binding in human placental membrane vesicles from brush-border and basal sides of the trophoblast. J Membr Biol. 1991 Jan;119(2):151–161. doi: 10.1007/BF01871414. [DOI] [PubMed] [Google Scholar]
  4. Burres N. S., Cass C. E. Comparison of Coulter volumes with radiometrically determined intracellular water volumes for cultured cells. In Vitro Cell Dev Biol. 1989 May;25(5):419–423. doi: 10.1007/BF02624626. [DOI] [PubMed] [Google Scholar]
  5. Burres N. S., Cass C. E. Density-dependent inhibition of expression of syncytiotrophoblastic markers by cultured human choriocarcinoma (BeWo) cells. J Cell Physiol. 1986 Sep;128(3):375–382. doi: 10.1002/jcp.1041280305. [DOI] [PubMed] [Google Scholar]
  6. Burres N. S., Cass C. E. Inhibition of methotrexate-induced differentiation of cultured human choriocarcinoma (BeWo) cells by thymidine. Cancer Res. 1987 Oct 1;47(19):5059–5064. [PubMed] [Google Scholar]
  7. Cass C. E., Gaudette L. A., Paterson A. R. Mediated transport of nucleosides in human erythrocytes. Specific binding of the inhibitor nitrobenzylthioinosine to nucleoside transport sites in the erythrocyte membrane. Biochim Biophys Acta. 1974 Apr 12;345(1):1–10. doi: 10.1016/0005-2736(74)90239-9. [DOI] [PubMed] [Google Scholar]
  8. Cass C. E., Kolassa N., Uehara Y., Dahlig-Harley E., Harley E. R., Paterson A. R. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport-deficient mouse lymphoma cells. Biochim Biophys Acta. 1981 Dec 21;649(3):769–777. doi: 10.1016/0005-2736(81)90182-6. [DOI] [PubMed] [Google Scholar]
  9. Crawford C. R., Ng C. Y., Ullman B., Belt J. A. Identification and reconstitution of the nucleoside transporter of CEM human leukemia cells. Biochim Biophys Acta. 1990 May 24;1024(2):289–297. doi: 10.1016/0005-2736(90)90357-t. [DOI] [PubMed] [Google Scholar]
  10. Dagnino L., Bennett L. L., Jr, Paterson A. R. Sodium-dependent nucleoside transport in mouse leukemia L1210 cells. J Biol Chem. 1991 Apr 5;266(10):6308–6311. [PubMed] [Google Scholar]
  11. Dagnino L., Paterson A. R. Sodium-dependent and equilibrative nucleoside transport systems in L1210 mouse leukemia cells: effect of inhibitors of equilibrative systems on the content and retention of nucleosides. Cancer Res. 1990 Oct 15;50(20):6549–6553. [PubMed] [Google Scholar]
  12. Dahlig-Harley E., Eilam Y., Paterson A. R., Cass C. E. Binding of nitrobenzylthioinosine to high-affinity sites on the nucleoside-transport mechanism of HeLa cells. Biochem J. 1981 Nov 15;200(2):295–305. doi: 10.1042/bj2000295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Darnowski J. W., Holdridge C., Handschumacher R. E. Concentrative uridine transport by murine splenocytes: kinetics, substrate specificity, and sodium dependency. Cancer Res. 1987 May 15;47(10):2614–2619. [PubMed] [Google Scholar]
  14. Friedman S. J., Skehan P. Morphological differentiation of human choriocarcinoma cells induced by methotrexate. Cancer Res. 1979 Jun;39(6 Pt 1):1960–1967. [PubMed] [Google Scholar]
  15. Hammond J. R., Johnstone R. M. Solubilization and reconstitution of a nucleoside-transport system from Ehrlich ascites-tumour cells. Biochem J. 1989 Aug 15;262(1):109–118. doi: 10.1042/bj2620109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hogue D. L., Hodgson K. C., Cass C. E. Effects of inhibition of N-linked glycosylation by tunicamycin on nucleoside transport polypeptides of L1210 leukemia cells. Biochem Cell Biol. 1990 Jan;68(1):199–209. doi: 10.1139/o90-026. [DOI] [PubMed] [Google Scholar]
  17. Jarvis S. M., Hammond J. R., Paterson A. R., Clanachan A. S. Species differences in nucleoside transport. A study of uridine transport and nitrobenzylthioinosine binding by mammalian erythrocytes. Biochem J. 1982 Oct 15;208(1):83–88. doi: 10.1042/bj2080083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarvis S. M., Ng A. S. Identification of the adenosine uptake sites in guinea pig brain. J Neurochem. 1985 Jan;44(1):183–188. doi: 10.1111/j.1471-4159.1985.tb07129.x. [DOI] [PubMed] [Google Scholar]
  19. Jarvis S. M. Nitrobenzylthioinosine-sensitive nucleoside transport system: mechanism of inhibition by dipyridamole. Mol Pharmacol. 1986 Dec;30(6):659–665. [PubMed] [Google Scholar]
  20. Jarvis S. M., Young J. D. Nucleoside transport in human and sheep erythrocytes. Evidence that nitrobenzylthioinosine binds specifically to functional nucleoside-transport sites. Biochem J. 1980 Aug 15;190(2):377–383. doi: 10.1042/bj1900377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jarvis S. M., Young J. D. Photoaffinity labelling of nucleoside transporter polypeptides. Pharmacol Ther. 1987;32(3):339–359. doi: 10.1016/0163-7258(87)90080-5. [DOI] [PubMed] [Google Scholar]
  22. Kwong F. Y., Baldwin S. A., Scudder P. R., Jarvis S. M., Choy M. Y., Young J. D. Erythrocyte nucleoside and sugar transport. Endo-beta-galactosidase and endoglycosidase-F digestion of partially purified human and pig transporter proteins. Biochem J. 1986 Dec 1;240(2):349–356. doi: 10.1042/bj2400349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kwong F. Y., Davies A., Tse C. M., Young J. D., Henderson P. J., Baldwin S. A. Purification of the human erythrocyte nucleoside transporter by immunoaffinity chromatography. Biochem J. 1988 Oct 1;255(1):243–249. [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Le Hir M., Dubach U. C. Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 1984 May;401(1):58–63. doi: 10.1007/BF00581533. [DOI] [PubMed] [Google Scholar]
  26. Lee C. W., Sokoloski J. A., Sartorelli A. C., Handschumacher R. E. Induction of the differentiation of HL-60 cells by phorbol 12-myristate 13-acetate activates a Na(+)-dependent uridine-transport system. Involvement of protein kinase C. Biochem J. 1991 Feb 15;274(Pt 1):85–90. doi: 10.1042/bj2740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meckling-Gill K. A., Cass C. E. Effects of transformation by v-fps on nucleoside transport in Rat-2 fibroblasts. Biochem J. 1992 Feb 15;282(Pt 1):147–154. doi: 10.1042/bj2820147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pande S. V. Liquid scintillation counting of aqueous samples using triton-containing scintillants. Anal Biochem. 1976 Jul;74(1):25–34. doi: 10.1016/0003-2697(76)90306-7. [DOI] [PubMed] [Google Scholar]
  29. Paterson A. R., Yang S. E., Lau E. Y., Cass C. E. Low specificity of the nucleoside transport mechanism of RPMI 6410 cells. Mol Pharmacol. 1979 Nov;16(3):900–908. [PubMed] [Google Scholar]
  30. Pattillo R. A., Gey G. O. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 1968 Jul;28(7):1231–1236. [PubMed] [Google Scholar]
  31. Paul B., Chen M. F., Paterson A. R. Inhibitors of nucleoside transport. A structure-activity study using human erythrocytes. J Med Chem. 1975 Oct;18(10):968–973. doi: 10.1021/jm00244a003. [DOI] [PubMed] [Google Scholar]
  32. Plagemann P. G., Wohlhueter R. M., Woffendin C. Nucleoside and nucleobase transport in animal cells. Biochim Biophys Acta. 1988 Oct 11;947(3):405–443. doi: 10.1016/0304-4157(88)90002-0. [DOI] [PubMed] [Google Scholar]
  33. Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
  34. Schwenk M., Hegazy E., Lopez del Pino V. Uridine uptake by isolated intestinal epithelial cells of guinea pig. Biochim Biophys Acta. 1984 Dec 11;805(4):370–374. doi: 10.1016/0167-4889(84)90020-x. [DOI] [PubMed] [Google Scholar]
  35. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tse C. M., Belt J. A., Jarvis S. M., Paterson A. R., Wu J. S., Young J. D. Reconstitution studies of the human erythrocyte nucleoside transporter. J Biol Chem. 1985 Mar 25;260(6):3506–3511. [PubMed] [Google Scholar]
  37. Vijayalakshmi D., Belt J. A. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. J Biol Chem. 1988 Dec 25;263(36):19419–19423. [PubMed] [Google Scholar]
  38. Williams T. C., Jarvis S. M. Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles. Biochem J. 1991 Feb 15;274(Pt 1):27–33. doi: 10.1042/bj2740027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wohlhueter R. M., Marz R., Plagemann P. G. Properties of the thymidine transport system of Chinese hamster ovary cells as probed by nitrobenzylthioinosine. J Membr Biol. 1978 Sep 19;42(3):247–264. doi: 10.1007/BF01870361. [DOI] [PubMed] [Google Scholar]
  40. Wu J. S., Kwong F. Y., Jarvis S. M., Young J. D. Identification of the erythrocyte nucleoside transporter as a band 4.5 polypeptide. Photoaffinity labeling studies using nitrobenzylthioinosine. J Biol Chem. 1983 Nov 25;258(22):13745–13751. [PubMed] [Google Scholar]
  41. Young J. D., Jarvis S. M., Belt J. A., Gati W. P., Paterson A. R. Identification of the nucleoside transporter in cultured mouse lymphoma cells. Photoaffinity labeling of plasma membrane-enriched fractions from nucleoside transport-competent (S49) and nucleoside transport-deficient (AE1) cells with [3H]nitrobenzylthioinosine. J Biol Chem. 1984 Jul 10;259(13):8363–8365. [PubMed] [Google Scholar]
  42. Young J. D., Jarvis S. M., Robins M. J., Paterson A. R. Photoaffinity labeling of the human erythrocyte nucleoside transporter by N6-(p-Azidobenzyl)adenosine and nitrobenzylthioinosine. Evidence that the transporter is a band 4.5 polypeptide. J Biol Chem. 1983 Feb 25;258(4):2202–2208. [PubMed] [Google Scholar]
  43. Yudilevich D. L., Barros L. F. Transport of amino acids and nucleosides in the placenta. Biochem Soc Trans. 1990 Dec;18(6):1136–1140. doi: 10.1042/bst0181136. [DOI] [PubMed] [Google Scholar]
  44. Zimmerman T. P., Mahony W. B., Prus K. L. 3'-azido-3'-deoxythymidine. An unusual nucleoside analogue that permeates the membrane of human erythrocytes and lymphocytes by nonfacilitated diffusion. J Biol Chem. 1987 Apr 25;262(12):5748–5754. [PubMed] [Google Scholar]
  45. van der Ende A., du Maine A., Simmons C. F., Schwartz A. L., Strous G. J. Iron metabolism in BeWo chorion carcinoma cells. Transferrin-mediated uptake and release of iron. J Biol Chem. 1987 Jun 25;262(18):8910–8916. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES