Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Dec 15;288(Pt 3):997–1004. doi: 10.1042/bj2880997

N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora.

N J Bainton 1, P Stead 1, S R Chhabra 1, B W Bycroft 1, G P Salmond 1, G S Stewart 1, P Williams 1
PMCID: PMC1131986  PMID: 1335238

Abstract

Erwinia carotovora A.T.C.C. 39048 produces the antibiotic 1-carbapen-2-em-3-carboxylic acid. A number of mutants with a carbapenem-non-producing phenotype were selected as part of an investigation into the molecular and genetic basis of carbapenem biosynthesis. Cross-feeding studies revealed that the mutants fell into two discrete groups. Group 1 mutants were found to secrete a diffusible low-molecular-mass compound which restored carbapenem production in group 2 mutants. This compound was isolated from the spent culture supernatant of a group 1 mutant using solvent extraction, hydrophobic-interaction chromatography and silica-gel chromatography, and finally purified by reverse-phase semipreparative h.p.l.c. M.s. and n.m.r. spectroscopy revealed that the compound was N-(3-oxohexanoyl)homoserine lactone. Both D- and L-isomers were synthesized, and subsequent analysis by c.d. established that the natural product has the L-configuration. Although carbapenem production was restored by both isomers, dose-response curves indicated that the L-isomer has greater activity, with an induction threshold of about 0.5 micrograms/ml. N-(3-Oxohexanoyl)-L-homoserine lactone is, therefore, an autoregulator of carbapenem biosynthesis rather than a biosynthetic intermediate. This compound is already known for its role in autoinduction of bioluminescence in the marine bacterium Vibrio fischeri. It is also structurally-related to the A- and I-factors which are known to regulate production of antibiotics in some Streptomyces species. Its association in this work with the regulation of carbapenem biosynthesis implies a broader role for autoregulator-controlled gene expression in prokaryotes.

Full text

PDF
997

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bainton N. J., Bycroft B. W., Chhabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E., Winson M. K., Salmond G. P., Stewart G. S. A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene. 1992 Jul 1;116(1):87–91. doi: 10.1016/0378-1119(92)90633-z. [DOI] [PubMed] [Google Scholar]
  2. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J Antibiot (Tokyo) 1988 Sep;41(9):1231–1242. doi: 10.7164/antibiotics.41.1231. [DOI] [PubMed] [Google Scholar]
  3. Cao J. G., Meighen E. A. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J Biol Chem. 1989 Dec 25;264(36):21670–21676. [PubMed] [Google Scholar]
  4. Distler J., Ebert A., Mansouri K., Pissowotzki K., Stockmann M., Piepersberg W. Gene cluster for streptomycin biosynthesis in Streptomyces griseus: nucleotide sequence of three genes and analysis of transcriptional activity. Nucleic Acids Res. 1987 Oct 12;15(19):8041–8056. doi: 10.1093/nar/15.19.8041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Eberhard A., Burlingame A. L., Eberhard C., Kenyon G. L., Nealson K. H., Oppenheimer N. J. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry. 1981 Apr 28;20(9):2444–2449. doi: 10.1021/bi00512a013. [DOI] [PubMed] [Google Scholar]
  6. Gambello M. J., Iglewski B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol. 1991 May;173(9):3000–3009. doi: 10.1128/jb.173.9.3000-3009.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara O., Beppu T. Mutants blocked in streptomycin production in Streptomyces griseus - the role of A-factor. J Antibiot (Tokyo) 1982 Mar;35(3):349–358. doi: 10.7164/antibiotics.35.349. [DOI] [PubMed] [Google Scholar]
  8. Henikoff S., Wallace J. C., Brown J. P. Finding protein similarities with nucleotide sequence databases. Methods Enzymol. 1990;183:111–132. doi: 10.1016/0076-6879(90)83009-x. [DOI] [PubMed] [Google Scholar]
  9. Horinouchi S., Kumada Y., Beppu T. Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol. 1984 May;158(2):481–487. doi: 10.1128/jb.158.2.481-487.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Horinouchi S., Nishiyama M., Suzuki H., Kumada Y., Beppu T. The cloned Streptomyces bikiniensis A-factor determinant. J Antibiot (Tokyo) 1985 May;38(5):636–641. doi: 10.7164/antibiotics.38.636. [DOI] [PubMed] [Google Scholar]
  11. Kinashi H., Shimaji M., Sakai A. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. 1987 Jul 30-Aug 5Nature. 328(6129):454–456. doi: 10.1038/328454a0. [DOI] [PubMed] [Google Scholar]
  12. Kohalmi S. E., Kunz B. A. Role of neighbouring bases and assessment of strand specificity in ethylmethanesulphonate and N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis in the SUP4-o gene of Saccharomyces cerevisiae. J Mol Biol. 1988 Dec 5;204(3):561–568. doi: 10.1016/0022-2836(88)90355-5. [DOI] [PubMed] [Google Scholar]
  13. Meighen E. A. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991 Mar;55(1):123–142. doi: 10.1128/mr.55.1.123-142.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyake K., Horinouchi S., Yoshida M., Chiba N., Mori K., Nogawa N., Morikawa N., Beppu T. Detection and properties of A-factor-binding protein from Streptomyces griseus. J Bacteriol. 1989 Aug;171(8):4298–4302. doi: 10.1128/jb.171.8.4298-4302.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyake K., Kuzuyama T., Horinouchi S., Beppu T. The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol. 1990 Jun;172(6):3003–3008. doi: 10.1128/jb.172.6.3003-3008.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohnuki T., Imanaka T., Aiba S. Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance. J Bacteriol. 1985 Oct;164(1):85–94. doi: 10.1128/jb.164.1.85-94.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parker W. L., Rathnum M. L., Wells J. S., Jr, Trejo W. H., Principe P. A., Sykes R. B. SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. J Antibiot (Tokyo) 1982 Jun;35(6):653–660. doi: 10.7164/antibiotics.35.653. [DOI] [PubMed] [Google Scholar]
  18. Richardson K. K., Crosby R. M., Richardson F. C., Skopek T. R. DNA base changes induced following in vivo exposure of unadapted, adapted or ada- Escherichia coli to N-methyl-N'-nitro-N-nitrosoguanidine. Mol Gen Genet. 1987 Oct;209(3):526–532. doi: 10.1007/BF00331159. [DOI] [PubMed] [Google Scholar]
  19. Tadayyon M., Broome-Smith J. K. TnblaM: a transposon for directly tagging bacterial genes encoding cell envelope and secreted proteins. Gene. 1992 Feb 1;111(1):21–26. doi: 10.1016/0378-1119(92)90598-j. [DOI] [PubMed] [Google Scholar]
  20. Williamson J. M., Inamine E., Wilson K. E., Douglas A. W., Liesch J. M., Albers-Schönberg G. Biosynthesis of the beta-lactam antibiotic, thienamycin, by Streptomyces cattleya. J Biol Chem. 1985 Apr 25;260(8):4637–4647. [PubMed] [Google Scholar]
  21. Yamada Y., Sugamura K., Kondo K., Yanagimoto M., Okada H. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J Antibiot (Tokyo) 1987 Apr;40(4):496–504. doi: 10.7164/antibiotics.40.496. [DOI] [PubMed] [Google Scholar]
  22. de Vries G. E., Raymond C. K., Ludwig R. A. Extension of bacteriophage lambda host range: selection, cloning, and characterization of a constitutive lambda receptor gene. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6080–6084. doi: 10.1073/pnas.81.19.6080. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES