Abstract
The identification and characterization of steroid-hormone-binding glutathione S-transferases (GST) were undertaken using photoaffinity-labelling techniques. Irradiation of mouse liver cytosol, in the presence of 50 nM-[3H]methyltrienolone, resulted in the specific affinity labelling of five proteins. One of these proteins, designated MBP27, had an approximate molecular mass of 27 kDa under denaturing conditions and was induced by treatment of mice with either 2(3)-t-butyl-4-hydroxyanisole (BHA) or phenobarbital (PB). An additional affinity-labelled protein, MBP25, which was not detected in untreated mouse cytosol, was induced in the liver cytosols from BHA- and PB-treated mice. The molecular masses of these proteins and their induction by BHA and PB suggested that they may be steroid-hormone-binding GST subunits. Irradiation of mouse liver cytosol in the presence of [3H]methyltrienolone, followed by immunoprecipitation using GST-specific antibodies established that both GST mu and GST alpha bind [3H]methyltrienolone and both contribute to the affinity-labelled protein designated MBP27. GST Ya1 Ya1, an alpha class GST that is not expressed in untreated mouse liver but is induced by BHA and PB, was also found to bind [3H]methyltrienolone and is identical with the affinity-labelled protein designated MBP25. Experiments were undertaken next to assess the effects of the anticarcinogenic plant compound indole-3-carbinol (I3C) on GST-mediated steroid hormone-binding using the photoaffinity labelling techniques. Treatment of mice with I3C resulted in the induction of immunoreactive GST mu and GST Ya1 Ya1. However, the steroid-binding activity of these proteins in vitro was severely inhibited by the acid-condensation products of I3C that are generated in the stomach after ingestion. These results suggest that I3C may inhibit GST-mediated steroid-binding activity which could contribute to the anticarcinogenic activity of this compound.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batist G., Tulpule A., Sinha B. K., Katki A. G., Myers C. E., Cowan K. H. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem. 1986 Nov 25;261(33):15544–15549. [PubMed] [Google Scholar]
- Bennett C. F., Spector D. L., Yeoman L. C. Nonhistone protein BA is a glutathione S-transferase localized to interchromatinic regions of the cell nucleus. J Cell Biol. 1986 Feb;102(2):600–609. doi: 10.1083/jcb.102.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson A. M., Batzinger R. P., Ou S. Y., Bueding E., Cha Y. N., Talalay P. Elevation of hepatic glutathione S-transferase activities and protection against mutagenic metabolites of benzo(a)pyrene by dietary antioxidants. Cancer Res. 1978 Dec;38(12):4486–4495. [PubMed] [Google Scholar]
- Benson A. M., Hunkeler M. J., York J. L. Mouse hepatic glutathione transferase isoenzymes and their differential induction by anticarcinogens. Specificities of butylated hydroxyanisole and bisethylxanthogen as inducers of glutathione transferases in male and female CD-1 mice. Biochem J. 1989 Aug 1;261(3):1023–1029. doi: 10.1042/bj2611023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benson A. M., Hunkeler M. J., York J. L. Mouse hepatic glutathione transferase isoenzymes and their differential induction by anticarcinogens. Specificities of butylated hydroxyanisole and bisethylxanthogen as inducers of glutathione transferases in male and female CD-1 mice. Biochem J. 1989 Aug 1;261(3):1023–1029. doi: 10.1042/bj2611023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219. doi: 10.1002/9780470122778.ch5. [DOI] [PubMed] [Google Scholar]
- Bradfield C. A., Bjeldanes L. F. Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolase activities in the rat. Food Chem Toxicol. 1984 Dec;22(12):977–982. doi: 10.1016/0278-6915(84)90147-9. [DOI] [PubMed] [Google Scholar]
- Bradfield C. A., Bjeldanes L. F. Structure-activity relationships of dietary indoles: a proposed mechanism of action as modifiers of xenobiotic metabolism. J Toxicol Environ Health. 1987;21(3):311–323. doi: 10.1080/15287398709531021. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burt R. K., Garfield S., Johnson K., Thorgeirsson S. S. Transformation of rat liver epithelial cells with v-H-ras or v-raf causes expression of MDR-1, glutathione-S-transferase-P and increased resistance to cytotoxic chemicals. Carcinogenesis. 1988 Dec;9(12):2329–2332. doi: 10.1093/carcin/9.12.2329. [DOI] [PubMed] [Google Scholar]
- Chang M., Burgess J. R., Scholz R. W., Reddy C. C. The induction of specific rat liver glutathione S-transferase subunits under inadequate selenium nutrition causes an increase in prostaglandin F2 alpha formation. J Biol Chem. 1990 Apr 5;265(10):5418–5423. [PubMed] [Google Scholar]
- Dahllöf B., Martinsson T., Mannervik B., Jensson H., Levan G. Characterization of multidrug resistance in SEWA mouse tumor cells: increased glutathione transferase activity and reversal of resistance with verapamil. Anticancer Res. 1987 Jan-Feb;7(1):65–69. [PubMed] [Google Scholar]
- De Kruif C. A., Marsman J. W., Venekamp J. C., Falke H. E., Noordhoek J., Blaauboer B. J., Wortelboer H. M. Structure elucidation of acid reaction products of indole-3-carbinol: detection in vivo and enzyme induction in vitro. Chem Biol Interact. 1991;80(3):303–315. doi: 10.1016/0009-2797(91)90090-t. [DOI] [PubMed] [Google Scholar]
- Di Simplicio P., Jensson H., Mannervik B. Effects of inducers of drug metabolism on basic hepatic forms of mouse glutathione transferase. Biochem J. 1989 Nov 1;263(3):679–685. doi: 10.1042/bj2630679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green S., Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 1988 Nov;4(11):309–314. doi: 10.1016/0168-9525(88)90108-4. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
- Hatayama I., Satoh K., Sato K. Developmental and hormonal regulation of the major form of hepatic glutathione S-transferase in male mice. Biochem Biophys Res Commun. 1986 Oct 30;140(2):581–588. doi: 10.1016/0006-291x(86)90771-0. [DOI] [PubMed] [Google Scholar]
- Hayes J. D., Chalmers J. Bile acid inhibition of basic and neutral glutathione S-transferases in rat liver. Biochem J. 1983 Dec 1;215(3):581–588. doi: 10.1042/bj2150581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Mantle T. J. Inhibition of hepatic and extrahepatic glutathione S-transferases by primary and secondary bile acids. Biochem J. 1986 Jan 15;233(2):407–415. doi: 10.1042/bj2330407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayes J. D., Strange R. C., Percy-Robb I. W. Identification of two lithocholic acid-binding proteins. Separation of ligandin from glutathione S-transferase B. Biochem J. 1979 Sep 1;181(3):699–708. doi: 10.1042/bj1810699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homma H., Listowsky I. Identification of Yb-glutathione-S-transferase as a major rat liver protein labeled with dexamethasone 21-methanesulfonate. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7165–7169. doi: 10.1073/pnas.82.21.7165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Homma H., Maruyama H., Niitsu Y., Listowsky I. A subclass of glutathione S-transferases as intracellular high-capacity and high-affinity steroid-binding proteins. Biochem J. 1986 May 1;235(3):763–768. doi: 10.1042/bj2350763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa T., Müller M., Klünemann C., Schaub T., Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279–19286. [PubMed] [Google Scholar]
- Jeffcoat R., Brawn P. R., James A. T. The effect of soluble rat liver proteins on the activity of microsomal stearoyl-CoA and linoleoyl-CoA desaturase. Biochim Biophys Acta. 1976 Apr 22;431(1):33–44. doi: 10.1016/0005-2760(76)90257-5. [DOI] [PubMed] [Google Scholar]
- Jeffcoat R., Brawn P. R., Safford R., James A. T. Properties of rat liver microsomal stearoyl-coenzyme A desaturase. Biochem J. 1977 Feb 1;161(2):431–437. doi: 10.1042/bj1610431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffcoat R., Dunton A. P., James A. T. Evidence for the different responses of delta9-, delta6- and delta5-fatty acyl-CoA desaturases to cytoplasmic proteins. Biochim Biophys Acta. 1978 Jan 27;528(1):28–35. doi: 10.1016/0005-2760(78)90049-8. [DOI] [PubMed] [Google Scholar]
- Jones M. S., Jones O. T. The structural organization of haem synthesis in rat liver mitochondria. Biochem J. 1969 Jul;113(3):507–514. doi: 10.1042/bj1130507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- LeBlanc G. A., Waxman D. J. Mechanisms of cyclophosphamide action on hepatic P-450 expression. Cancer Res. 1990 Sep 15;50(18):5720–5726. [PubMed] [Google Scholar]
- LeBlanc G. A., Waxman D. J. Regulation and ligand-binding specificities of two sex-specific bile acid-binding proteins of rat liver cytosol. J Biol Chem. 1990 Apr 5;265(10):5654–5661. [PubMed] [Google Scholar]
- Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama H., Arias I. M., Listowsky I. Distinctions between the multiple cationic forms of rat liver glutathione S-transferase. J Biol Chem. 1984 Oct 25;259(20):12444–12448. [PubMed] [Google Scholar]
- Maruyama H., Listowsky I. Preferential binding of steroids by anionic forms of rat glutathione S-transferase. J Biol Chem. 1984 Oct 25;259(20):12449–12455. [PubMed] [Google Scholar]
- McDanell R., McLean A. E., Hanley A. B., Heaney R. K., Fenwick G. R. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem Toxicol. 1988 Jan;26(1):59–70. doi: 10.1016/0278-6915(88)90042-7. [DOI] [PubMed] [Google Scholar]
- McLellan L. I., Hayes J. D. Differential induction of class alpha glutathione S-transferases in mouse liver by the anticarcinogenic antioxidant butylated hydroxyanisole. Purification and characterization of glutathione S-transferase Ya1Ya1. Biochem J. 1989 Oct 15;263(2):393–402. doi: 10.1042/bj2630393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morse M. A., LaGreca S. D., Amin S. G., Chung F. L. Effects of indole-3-carbinol on lung tumorigenesis and DNA methylation induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and on the metabolism and disposition of NNK in A/J mice. Cancer Res. 1990 May 1;50(9):2613–2617. [PubMed] [Google Scholar]
- Parchment R. E., Benson A. M. Glutathione S-transferase isozymes of mouse intestine: differential induction by 2(3)-tert-butyl-4-hydroxyanisole. Biochem Biophys Res Commun. 1984 Mar 30;119(3):1015–1021. doi: 10.1016/0006-291x(84)90875-1. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Windle J. J., Morrow J. F., Benson A. M., Talalay P. Increased synthesis of glutathione S-transferases in response to anticarcinogenic antioxidants. Cloning and measurement of messenger RNA. J Biol Chem. 1983 Feb 10;258(3):2052–2062. [PubMed] [Google Scholar]
- Smith G. J., Ohl V. S., Litwack G. Ligandin, the glutathione S-transferases, and chemically induced hepatocarcinogenesis: a review. Cancer Res. 1977 Jan;37(1):8–14. [PubMed] [Google Scholar]
- Sparnins V. L., Venegas P. L., Wattenberg L. W. Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J Natl Cancer Inst. 1982 Mar;68(3):493–496. [PubMed] [Google Scholar]
- Sparnins V. L., Venegas P. L., Wattenberg L. W. Glutathione S-transferase activity: enhancement by compounds inhibiting chemical carcinogenesis and by dietary constituents. J Natl Cancer Inst. 1982 Mar;68(3):493–496. [PubMed] [Google Scholar]
- Stolz A., Takikawa H., Ookhtens M., Kaplowitz N. The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol. 1989;51:161–176. doi: 10.1146/annurev.ph.51.030189.001113. [DOI] [PubMed] [Google Scholar]
- Takikawa H., Kaplowitz N. Comparison of the binding sites of GSH S-transferases of the Ya- and Yb-subunit classes: effect of glutathione on the binding of bile acids. J Lipid Res. 1988 Mar;29(3):279–286. [PubMed] [Google Scholar]
- Takikawa H., Stolz A., Kaplowitz N. Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by rat hepatic 3 alpha-hydroxysteroid dehydrogenase. I. Studies with the purified enzyme, isolated rat hepatocytes, and inhibition by indomethacin. J Clin Invest. 1987 Sep;80(3):852–860. doi: 10.1172/JCI113143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vessey D. A., Zakim D. Inhibition of glutathione S-transferase by bile acids. Biochem J. 1981 Aug 1;197(2):321–325. doi: 10.1042/bj1970321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warholm M., Jensson H., Tahir M. K., Mannervik B. Purification and characterization of three distinct glutathione transferases from mouse liver. Biochemistry. 1986 Jul 15;25(14):4119–4125. doi: 10.1021/bi00362a020. [DOI] [PubMed] [Google Scholar]
- Warholm M., Jensson H., Tahir M. K., Mannervik B. Purification and characterization of three distinct glutathione transferases from mouse liver. Biochemistry. 1986 Jul 15;25(14):4119–4125. doi: 10.1021/bi00362a020. [DOI] [PubMed] [Google Scholar]
- Wattenberg L. W., Loub W. D. Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. Cancer Res. 1978 May;38(5):1410–1413. [PubMed] [Google Scholar]
- Waxman D. J. Glutathione S-transferases: role in alkylating agent resistance and possible target for modulation chemotherapy--a review. Cancer Res. 1990 Oct 15;50(20):6449–6454. [PubMed] [Google Scholar]
- Waxman D. J., LeBlanc G. A., Morrissey J. J., Staunton J., Lapenson D. P. Adult male-specific and neonatally programmed rat hepatic P-450 forms RLM2 and 2a are not dependent on pulsatile plasma growth hormone for expression. J Biol Chem. 1988 Aug 15;263(23):11396–11406. [PubMed] [Google Scholar]
- Wolkoff A. W., Goresky C. A., Sellin J., Gatmaitan Z., Arias I. M. Role of ligandin in transfer of bilirubin from plasma into liver. Am J Physiol. 1979 Jun;236(6):E638–E648. doi: 10.1152/ajpendo.1979.236.6.E638. [DOI] [PubMed] [Google Scholar]



