Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Dec 1;288(Pt 2):407–411. doi: 10.1042/bj2880407

A competitive inhibitor of phospholipase A2 decreases surfactant phosphatidylcholine degradation by the rat lung.

A B Fisher 1, C Dodia 1, A Chander 1, M Jain 1
PMCID: PMC1132025  PMID: 1463444

Abstract

We have shown previously that radiolabelled phosphatidylcholine (PC) in liposomes or natural surfactant is removed from the alveolar space and metabolically recycled in a process that is stimulated by cyclic AMP (cAMP). In this study, we evaluated the effect of a transition-state phospholipid analogue (MJ33; 1-hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol) that competitively inhibited acidic phospholipase A2 (PLA2) activity (pH 4.0) of lung homogenate by more than 97%, but had no effect on PLA2 activity at pH 8.5. MJ33 incorporated into unilamellar liposomes (dipalmitoyl PC/egg PC/cholesterol/phosphatidylglycerol, molar proportions 10:5:3:2) or co-sonicated with biosynthesized natural surfactant was instilled into the trachea of the anaesthetized rat; lungs were then removed for 2 h perfusion in the absence or presence of 0.1 mM-8-bromo cAMP. Total uptake for phospholipid was unchanged in the presence of the inhibitor MJ33. Degradation of labelled PC during 2 h perfusion in the absence of MJ33 was approx. 26% of that instilled for choline-labelled liposomal PC, 16% for liposomal PC labelled in the second fatty-acyl position, and 33% for choline-labelled natural surfactant. Degradation of PC was decreased by approx. 25-40% for each substrate in the presence of MJ33. Inhibition of lipid degradation depended on the mole fraction of MJ33 in the liposomes and was maximal at 1 mol%. These studies demonstrate a significant role for acidic Ca(2+)-independent PLA2 in the degradation of internalized alveolar PC, but further indicate that this enzyme accounts for a minor fraction of total lung PC metabolism.

Full text

PDF
407

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeberhard E. E., Barrett C. T., Kaplan S. A., Scott M. L. Regulation of phospholipid synthesis by intracellular phospholipases in fetal rabbit type II pneumocytes. Biochim Biophys Acta. 1985 Mar 6;833(3):473–483. doi: 10.1016/0005-2760(85)90105-5. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bennett C. F., McCarte A., Crooke S. T. Purification and characterization of a soluble phospholipase A2 from guinea pig lung. Biochim Biophys Acta. 1990 Dec 4;1047(3):271–283. doi: 10.1016/0005-2760(90)90526-4. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Chalifour R. J., Kanfer J. N. Microsomal phospholipase D of rat brain and lung tissues. Biochem Biophys Res Commun. 1980 Sep 30;96(2):742–747. doi: 10.1016/0006-291x(80)91417-5. [DOI] [PubMed] [Google Scholar]
  6. Chander A., Fisher A. B., Strauss J. F., 3rd Role of an acidic compartment in synthesis of disaturated phosphatidylcholine by rat granular pneumocytes. Biochem J. 1982 Dec 15;208(3):651–658. doi: 10.1042/bj2080651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chander A., Johnson R. G., Reicherter J., Fisher A. B. Lung lamellar bodies maintain an acidic internal pH. J Biol Chem. 1986 May 5;261(13):6126–6131. [PubMed] [Google Scholar]
  8. Chander A., Reicherter J., Fisher A. B. Degradation of dipalmitoyl phosphatidylcholine by isolated rat granular pneumocytes and reutilization for surfactant synthesis. J Clin Invest. 1987 Apr;79(4):1133–1138. doi: 10.1172/JCI112929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filgueiras O. M., Possmayer F. Purification and characterization of a phospholipase A2 associated with rabbit lung microsomes: some evidence for its mitochondrial origin. Biochim Biophys Acta. 1990 Oct 1;1046(3):258–266. doi: 10.1016/0005-2760(90)90239-t. [DOI] [PubMed] [Google Scholar]
  10. Fisher A. B., Chander A. Intracellular processing of surfactant lipids in the lung. Annu Rev Physiol. 1985;47:789–802. doi: 10.1146/annurev.ph.47.030185.004041. [DOI] [PubMed] [Google Scholar]
  11. Fisher A. B., Chander A., Reicherter J. Uptake and degradation of natural surfactant by isolated rat granular pneumocytes. Am J Physiol. 1987 Dec;253(6 Pt 1):C792–C796. doi: 10.1152/ajpcell.1987.253.6.C792. [DOI] [PubMed] [Google Scholar]
  12. Fisher A. B., Dodia C., Chander A. Alveolar uptake of lipid and protein components of surfactant. Am J Physiol. 1991 Oct;261(4 Pt 1):L334–L340. doi: 10.1152/ajplung.1991.261.4.L334. [DOI] [PubMed] [Google Scholar]
  13. Fisher A. B., Dodia C., Chander A. Beta-adrenergic mediators increase pulmonary retention of instilled phospholipids. J Appl Physiol (1985) 1985 Sep;59(3):743–748. doi: 10.1152/jappl.1985.59.3.743. [DOI] [PubMed] [Google Scholar]
  14. Fisher A. B., Dodia C., Chander A. Degradation and reutilization of alveolar phosphatidylcholine by rat lungs. J Appl Physiol (1985) 1987 Jun;62(6):2295–2299. doi: 10.1152/jappl.1987.62.6.2295. [DOI] [PubMed] [Google Scholar]
  15. Fisher A. B., Dodia C., Chander A. Secretagogues for lung surfactant increase lung uptake of alveolar phospholipids. Am J Physiol. 1989 Oct;257(4 Pt 1):L248–L252. doi: 10.1152/ajplung.1989.257.4.L248. [DOI] [PubMed] [Google Scholar]
  16. Heath M. F., Jacobson W. Phospholipases A1 and A2 in lamellar inclusion bodies of the alveolar epithelium of rabbit lung. Biochim Biophys Acta. 1976 Sep 27;441(3):443–452. doi: 10.1016/0005-2760(76)90241-1. [DOI] [PubMed] [Google Scholar]
  17. Heath M. F., Jacobson W. The nature of the phospholipases A of lung lamellar bodies. Pediatr Res. 1980 Jun;14(6):846–847. doi: 10.1203/00006450-198006000-00016. [DOI] [PubMed] [Google Scholar]
  18. Jacobs H. C., Ikegami M., Jobe A. H., Berry D. D., Jones S. Reutilization of surfactant phosphatidylcholine in adult rabbits. Biochim Biophys Acta. 1985 Oct 23;837(1):77–84. doi: 10.1016/0005-2760(85)90087-6. [DOI] [PubMed] [Google Scholar]
  19. Jacobs H., Jobe A., Ikegami M., Conaway D. The significance of reutilization of surfactant phosphatidylcholine. J Biol Chem. 1983 Apr 10;258(7):4159–4165. [PubMed] [Google Scholar]
  20. Jain M. K., Tao W. J., Rogers J., Arenson C., Eibl H., Yu B. Z. Active-site-directed specific competitive inhibitors of phospholipase A2: novel transition-state analogues. Biochemistry. 1991 Oct 22;30(42):10256–10268. doi: 10.1021/bi00106a025. [DOI] [PubMed] [Google Scholar]
  21. Mitnick M., DeMarco B., Gibbons J. M. Amniotic fluid phosphatidylglycerol and phosphatidylinositol separated by stepwise-development thin-layer chromatography. Clin Chem. 1980 Feb;26(2):277–281. [PubMed] [Google Scholar]
  22. Post M., Schuurmans E. A., Batenburg J. J., Van Golde L. M. Mechanisms involved in the synthesis of disaturated phosphatidylcholine by alveolar type II cells isolated from adult rat lung. Biochim Biophys Acta. 1983 Jan 7;750(1):68–77. doi: 10.1016/0005-2760(83)90205-9. [DOI] [PubMed] [Google Scholar]
  23. Van Golde L. M. Metabolism of phospholipids in the lung. Am Rev Respir Dis. 1976 Nov;114(5):977–1000. doi: 10.1164/arrd.1976.114.5.977. [DOI] [PubMed] [Google Scholar]
  24. Yeats D. A., Bakhle Y. S. Phospholipases A2 and C of human lung; subcellular distribution and substrate selectivity. Biochim Biophys Acta. 1989 Jun 8;1003(2):189–195. doi: 10.1016/0005-2760(89)90254-3. [DOI] [PubMed] [Google Scholar]
  25. Yost R. W., Chander A., Dodia C., Fisher A. B. Synthesis of phosphatidylcholine by rat lung during choline deficiency. J Appl Physiol (1985) 1986 Dec;61(6):2040–2044. doi: 10.1152/jappl.1986.61.6.2040. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES