Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Nov 15;288(Pt 1):55–61. doi: 10.1042/bj2880055

Kinetic analysis of internalization, recycling and redistribution of atrial natriuretic factor-receptor complex in cultured vascular smooth-muscle cells. Ligand-dependent receptor down-regulation.

K N Pandey 1
PMCID: PMC1132079  PMID: 1445281

Abstract

The kinetics of internalization, sequestration and metabolic degradation of atrial natriuretic factor (ANF)-receptor complex were studied in rat thoracic aortic smooth-muscle (RTASM) cells. These parameters were directly determined by measuring 125I-ANF binding to total, intracellular and cell-surface receptors. Pretreatment of cells with the lysosomotropic agent chloroquine and the energy depleter dinitrophenol led to an increase in the intracellular 125I-ANF radioactivity. After 60 min incubation at 37 degrees C, cell-associated 125I-ANF radioactivity fell rapidly in chloroquine-treated cells (> 85%) compared with the controls (< 45%). 125I-ANF radioactivity increased to a peak of 65% of the initial level within 15 min in chloroquine-treated cells compared with only 22% in the control cells. During the initial incubation period at 37 degrees C, chloroquine inhibited the release of both intact and degraded 125I-ANF in a time-dependent manner. However, at later incubation times, the effect of chloroquine was diminished and release of both degraded and intact ligand was resumed. Extracellular unlabelled ANF did not affect the release of degraded 125I-ANF but it accelerated the release of intact ANF by a retroendocytotic mechanism. After the endocytosis, about 30-40% of ANF receptors were restored to the cell surface from the internalized pool of receptors. The restoration was blocked by chloroquine or dinitrophenol but not by cycloheximide. Exposure of RTASM cells to unlabelled ANF resulted in a time- and concentration-dependent loss of ANF receptors. Unlabelled ANF (10 nM) induced a loss of more than 52% of 125I-ANF binding, and a complete loss occurred at micromolar concentrations. It is inferred that ANF-induced down-regulation of its receptor resulted primarily from an increased rate in internalization and metabolic degradation of ligand-receptor complex by receptor-mediated endocytotic mechanisms.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Sairam M. R., Cantin M. Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem. 1990 May 25;265(15):8566–8572. [PubMed] [Google Scholar]
  2. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  3. Atarashi K., Mulrow P. J., Franco-Saenz R., Snajdar R., Rapp J. Inhibition of aldosterone production by an atrial extract. Science. 1984 Jun 1;224(4652):992–994. doi: 10.1126/science.6326267. [DOI] [PubMed] [Google Scholar]
  4. Atlas S. A., Kleinert H. D., Camargo M. J., Januszewicz A., Sealey J. E., Laragh J. H., Schilling J. W., Lewicki J. A., Johnson L. K., Maack T. Purification, sequencing and synthesis of natriuretic and vasoactive rat atrial peptide. Nature. 1984 Jun 21;309(5970):717–719. doi: 10.1038/309717a0. [DOI] [PubMed] [Google Scholar]
  5. Bellemann P., Neuser D. Modulation of ANP receptor-mediated cGMP accumulation by atrial natriuretic peptides and vasopressin in A10 vascular smooth muscle cells. J Recept Res. 1988;8(1-4):407–417. doi: 10.3109/10799898809049001. [DOI] [PubMed] [Google Scholar]
  6. Bex F., Corbin A. Atrial natriuretic factor stimulates testosterone production by mouse interstitial cells. Eur J Pharmacol. 1985 Sep 10;115(1):125–126. doi: 10.1016/0014-2999(85)90595-3. [DOI] [PubMed] [Google Scholar]
  7. Budzik G. P., Firestone S. L., Bush E. N., Connolly P. J., Rockway T. W., Sarin V. K., Holleman W. H. Divergence of ANF analogs in smooth muscle cell cGMP response and aorta vasorelaxation: evidence for receptor subtypes. Biochem Biophys Res Commun. 1987 Apr 14;144(1):422–431. doi: 10.1016/s0006-291x(87)80527-2. [DOI] [PubMed] [Google Scholar]
  8. Burnett J. C., Jr, Granger J. P., Opgenorth T. J. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol. 1984 Nov;247(5 Pt 2):F863–F866. doi: 10.1152/ajprenal.1984.247.5.F863. [DOI] [PubMed] [Google Scholar]
  9. Cahill P. A., Redmond E. M., Keenan A. K. Vascular atrial natriuretic factor receptor subtypes are not independently regulated by atrial peptides. J Biol Chem. 1990 Dec 15;265(35):21896–21906. [PubMed] [Google Scholar]
  10. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chamley J. H., Campbell G. R., McConnell J. D., Gröschel-Stewart U. Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res. 1977 Feb 14;177(4):503–522. doi: 10.1007/BF00220611. [DOI] [PubMed] [Google Scholar]
  12. Chang M. S., Lowe D. G., Lewis M., Hellmiss R., Chen E., Goeddel D. V. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. 1989 Sep 7;341(6237):68–72. doi: 10.1038/341068a0. [DOI] [PubMed] [Google Scholar]
  13. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  14. Currie M. G., Geller D. M., Cole B. R., Boylan J. G., YuSheng W., Holmberg S. W., Needleman P. Bioactive cardiac substances: potent vasorelaxant activity in mammalian atria. Science. 1983 Jul 1;221(4605):71–73. doi: 10.1126/science.6857267. [DOI] [PubMed] [Google Scholar]
  15. De Léan A., Racz K., Gutkowska J., Nguyen T. T., Cantin M., Genest J. Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology. 1984 Oct;115(4):1636–1638. doi: 10.1210/endo-115-4-1636. [DOI] [PubMed] [Google Scholar]
  16. Flynn T. G., de Bold M. L., de Bold A. J. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun. 1983 Dec 28;117(3):859–865. doi: 10.1016/0006-291x(83)91675-3. [DOI] [PubMed] [Google Scholar]
  17. Fuller F., Porter J. G., Arfsten A. E., Miller J., Schilling J. W., Scarborough R. M., Lewicki J. A., Schenk D. B. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem. 1988 Jul 5;263(19):9395–9401. [PubMed] [Google Scholar]
  18. Garbers D. L. Guanylate cyclase, a cell surface receptor. J Biol Chem. 1989 Jun 5;264(16):9103–9106. [PubMed] [Google Scholar]
  19. Garcia R., Thibault G., Nutt R. F., Cantin M., Genest J. Comparative vasoactive effects of native and synthetic atrial natriuretic factor (ANF). Biochem Biophys Res Commun. 1984 Mar 15;119(2):685–688. doi: 10.1016/s0006-291x(84)80304-6. [DOI] [PubMed] [Google Scholar]
  20. Goodfriend T. L., Elliott M. E., Atlas S. A. Actions of synthetic atrial natriuretic factor on bovine adrenal glomerulosa. Life Sci. 1984 Oct 15;35(16):1675–1682. doi: 10.1016/0024-3205(84)90179-6. [DOI] [PubMed] [Google Scholar]
  21. Grammer R. T., Fukumi H., Inagami T., Misono K. S. Rat atrial natriuretic factor. Purification and vasorelaxant activity. Biochem Biophys Res Commun. 1983 Oct 31;116(2):696–703. doi: 10.1016/0006-291x(83)90581-8. [DOI] [PubMed] [Google Scholar]
  22. Hirata M., Chang C. H., Murad F. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta. 1989 Mar 6;1010(3):346–351. doi: 10.1016/0167-4889(89)90060-8. [DOI] [PubMed] [Google Scholar]
  23. Hirata Y., Takata S., Tomita M., Takaichi S. Binding, internalization, and degradation of atrial natriuretic peptide in cultured vascular smooth muscle cells of rat. Biochem Biophys Res Commun. 1985 Nov 15;132(3):976–984. doi: 10.1016/0006-291x(85)91903-5. [DOI] [PubMed] [Google Scholar]
  24. Hirata Y., Tomita M., Takada S., Yoshimi H. Vascular receptor binding activities and cyclic GMP responses by synthetic human and rat atrial natriuretic peptides (ANP) and receptor down-regulation by ANP. Biochem Biophys Res Commun. 1985 Apr 30;128(2):538–546. doi: 10.1016/0006-291x(85)90080-4. [DOI] [PubMed] [Google Scholar]
  25. Horvath J., Ertl T., Schally A. V. Effect of atrial natriuretic peptide on gonadotropin release in superfused rat pituitary cells. Proc Natl Acad Sci U S A. 1986 May;83(10):3444–3446. doi: 10.1073/pnas.83.10.3444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Inagami T. Atrial natriuretic factor. J Biol Chem. 1989 Feb 25;264(6):3043–3046. [PubMed] [Google Scholar]
  27. Kato J., Lanier-Smith K. L., Currie M. G. Cyclic GMP down-regulates atrial natriuretic peptide receptors on cultured vascular endothelial cells. J Biol Chem. 1991 Aug 5;266(22):14681–14685. [PubMed] [Google Scholar]
  28. Leitman D. C., Andresen J. W., Kuno T., Kamisaki Y., Chang J. K., Murad F. Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem. 1986 Sep 5;261(25):11650–11655. [PubMed] [Google Scholar]
  29. Lowe D. G., Chang M. S., Hellmiss R., Chen E., Singh S., Garbers D. L., Goeddel D. V. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 1989 May;8(5):1377–1384. doi: 10.1002/j.1460-2075.1989.tb03518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maack T., Marion D. N., Camargo M. J., Kleinert H. D., Laragh J. H., Vaughan E. D., Jr, Atlas S. A. Effects of auriculin (atrial natriuretic factor) on blood pressure, renal function, and the renin-aldosterone system in dogs. Am J Med. 1984 Dec;77(6):1069–1075. doi: 10.1016/0002-9343(84)90190-6. [DOI] [PubMed] [Google Scholar]
  31. Maack T., Suzuki M., Almeida F. A., Nussenzveig D., Scarborough R. M., McEnroe G. A., Lewicki J. A. Physiological role of silent receptors of atrial natriuretic factor. Science. 1987 Oct 30;238(4827):675–678. doi: 10.1126/science.2823385. [DOI] [PubMed] [Google Scholar]
  32. Marshall S., Heidenreich K. A., Horikoshi H. Stoichiometric translocation of adipocyte insulin receptors from the cell-surface to the cell-interior. Studies using a novel method to rapidly remove detergent and concentrate soluble receptors. J Biol Chem. 1985 Apr 10;260(7):4128–4135. [PubMed] [Google Scholar]
  33. Morton J. J., Beattie E. C., Lyall F. Atrial natriuretic peptide vascular receptor: regulation of low-affinity binding by calcium. Clin Sci (Lond) 1989 Jan;76(1):9–11. doi: 10.1042/cs0760009. [DOI] [PubMed] [Google Scholar]
  34. Mukhopadhyay A. K., Bohnet H. G., Leidenberger F. A. Testosterone production by mouse Leydig cells is stimulated in vitro by atrial natriuretic factor. FEBS Lett. 1986 Jun 23;202(1):111–116. doi: 10.1016/0014-5793(86)80659-7. [DOI] [PubMed] [Google Scholar]
  35. Napier M. A., Arcuri K. E., Vandlen R. L. Binding and internalization of atrial natriuretic factor by high-affinity receptors in A10 smooth muscle cells. Arch Biochem Biophys. 1986 Aug 1;248(2):516–522. doi: 10.1016/0003-9861(86)90504-7. [DOI] [PubMed] [Google Scholar]
  36. Nussenzveig D. R., Lewicki J. A., Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem. 1990 Dec 5;265(34):20952–20958. [PubMed] [Google Scholar]
  37. Obana K., Naruse M., Inagami T., Brown A. B., Naruse K., Kurimoto F., Sakurai H., Demura H., Shizume K. Atrial natriuretic factor inhibits vasopressin secretion from rat posterior pituitary. Biochem Biophys Res Commun. 1985 Nov 15;132(3):1088–1094. doi: 10.1016/0006-291x(85)91918-7. [DOI] [PubMed] [Google Scholar]
  38. Obana K., Naruse M., Naruse K., Sakurai H., Demura H., Inagami T., Shizume K. Synthetic rat atrial natriuretic factor inhibits in vitro and in vivo renin secretion in rats. Endocrinology. 1985 Sep;117(3):1282–1284. doi: 10.1210/endo-117-3-1282. [DOI] [PubMed] [Google Scholar]
  39. Pandey K. N., Inagami T., Misono K. S. Atrial natriuretic factor receptor on cultured Leydig tumor cells: ligand binding and photoaffinity labeling. Biochemistry. 1986 Dec 30;25(26):8467–8472. doi: 10.1021/bi00374a022. [DOI] [PubMed] [Google Scholar]
  40. Pandey K. N., Kovacs W. J., Inagami T. The inhibition of progesterone secretion and the regulation of cyclic nucleotides by atrial natriuretic factor in gonadotropin responsive murine Leydig tumor cells. Biochem Biophys Res Commun. 1985 Dec 17;133(2):800–806. doi: 10.1016/0006-291x(85)90975-1. [DOI] [PubMed] [Google Scholar]
  41. Pandey K. N., Osteen K. G., Inagami T. Specific receptor-mediated stimulation of progesterone secretion and cGMP accumulation by rat atrial natriuretic factor in cultured human granulosa-lutein (G-L) cells. Endocrinology. 1987 Sep;121(3):1195–1197. doi: 10.1210/endo-121-3-1195. [DOI] [PubMed] [Google Scholar]
  42. Pandey K. N., Pavlou S. N., Inagami T. Identification and characterization of three distinct atrial natriuretic factor receptors. Evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth muscle, kidney tubular epithelium, and Leydig tumor cells by ligand binding, photoaffinity labeling, and tryptic proteolysis. J Biol Chem. 1988 Sep 15;263(26):13406–13413. [PubMed] [Google Scholar]
  43. Pandey K. N., Pavlou S. N., Kovacs W. J., Inagami T. Atrial natriuretic factor regulates steroidogenic responsiveness and cyclic nucleotide levels in mouse Leydig cells in vitro. Biochem Biophys Res Commun. 1986 Jul 16;138(1):399–404. doi: 10.1016/0006-291x(86)90295-0. [DOI] [PubMed] [Google Scholar]
  44. Pandey K. N., Singh S. Molecular cloning and expression of murine guanylate cyclase/atrial natriuretic factor receptor cDNA. J Biol Chem. 1990 Jul 25;265(21):12342–12348. [PubMed] [Google Scholar]
  45. Rathinavelu A., Isom G. E. Regulation of ANF receptor internalization: involvement of extracellular calcium. Biochem Biophys Res Commun. 1991 Mar 29;175(3):1017–1022. doi: 10.1016/0006-291x(91)91666-z. [DOI] [PubMed] [Google Scholar]
  46. Resink T. J., Panchenko M. P., Tkachuk V. A., Bühler F. R. Involvement of Ni protein in the functional coupling of the atrial natriuretic factor (ANF) receptor to adenylate cyclase in rat lung plasma membranes. Eur J Biochem. 1988 Jun 15;174(3):531–535. doi: 10.1111/j.1432-1033.1988.tb14131.x. [DOI] [PubMed] [Google Scholar]
  47. Roubert P., Lonchampt M. O., Chabrier P. E., Plas P., Goulin J., Braquet P. Down-regulation of atrial natriuretic factor receptors and correlation with cGMP stimulation in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun. 1987 Oct 14;148(1):61–67. doi: 10.1016/0006-291x(87)91076-x. [DOI] [PubMed] [Google Scholar]
  48. Samson W. K. Atrial natriuretic factor inhibits dehydration and hemorrhage-induced vasopressin release. Neuroendocrinology. 1985 Mar;40(3):277–279. doi: 10.1159/000124085. [DOI] [PubMed] [Google Scholar]
  49. Scarborough R. M., Schenk D. B., McEnroe G. A., Arfsten A., Kang L. L., Schwartz K., Lewicki J. A. Truncated atrial natriuretic peptide analogs. Comparison between receptor binding and stimulation of cyclic GMP accumulation in cultured vascular smooth muscle cells. J Biol Chem. 1986 Oct 5;261(28):12960–12964. [PubMed] [Google Scholar]
  50. Schenk D. B., Phelps M. N., Porter J. G., Fuller F., Cordell B., Lewicki J. A. Purification and subunit composition of atrial natriuretic peptide receptor. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1521–1525. doi: 10.1073/pnas.84.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schulz S., Singh S., Bellet R. A., Singh G., Tubb D. J., Chin H., Garbers D. L. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell. 1989 Sep 22;58(6):1155–1162. doi: 10.1016/0092-8674(89)90513-8. [DOI] [PubMed] [Google Scholar]
  52. Seidah N. G., Lazure C., Chrétien M., Thibault G., Garcia R., Cantin M., Genest J., Nutt R. F., Brady S. F., Lyle T. A. Amino acid sequence of homologous rat atrial peptides: natriuretic activity of native and synthetic forms. Proc Natl Acad Sci U S A. 1984 May;81(9):2640–2644. doi: 10.1073/pnas.81.9.2640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stein B. S., Sussman H. H. Demonstration of two distinct transferrin receptor recycling pathways and transferrin-independent receptor internalization in K562 cells. J Biol Chem. 1986 Aug 5;261(22):10319–10331. [PubMed] [Google Scholar]
  54. Tietze C., Schlesinger P., Stahl P. Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol. 1982 Feb;92(2):417–424. doi: 10.1083/jcb.92.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. de Bold A. J., Borenstein H. B., Veress A. T., Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981 Jan 5;28(1):89–94. doi: 10.1016/0024-3205(81)90370-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES