Abstract
In order to examine the role of fructose 2,6-bisphosphate (Fru-2,6-P2) in non-esterified-fatty-acid-stimulated gluconeogenesis, Fru-2,6-P2 levels were measured in cultured rat hepatocytes under conditions mimicking the fasted state. After addition of either 1.5 mM-palmitate or 10 nM-glucagon, [U-14C]lactate incorporation into glucose increased 2-fold, but only glucagon suppressed Fru-2,6-P2. Prevention of palmitate oxidation with a carnitine palmitoyltransferase-I inhibitor (2-bromopalmitate) diminished glucose production and Fru-2,6-P2 levels. Addition of exogenous glucose to the media increased Fru-2,6-P2 in a dose-related manner, which was further augmented by addition of palmitate. When Fru-2,6-P2 levels were examined in cells cultured under conditions mimicking the fed state (significantly higher basal Fru-2,6-P2 levels and lower glucose production), palmitate oxidation was associated with a significant fall in Fru-2,6-P2. In conclusion, the present studies have demonstrated a dissociation between fatty-acid-stimulated gluconeogenesis and changes in Fru-2,6-P2 in cultured rat hepatocytes. Further experiments suggest that the accumulation of intracellular hexose 6-phosphate as a result of fatty-acid-stimulated gluconeogenesis masks a putative inhibitory effect of fatty acids on Fru-2,6-P2 concentrations.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betley S., Alberti K. G., Agius L. Regulation of fatty acid and carbohydrate metabolism by insulin, growth hormone and tri-iodothyronine in hepatocyte cultures from normal and hypophysectomized rats. Biochem J. 1989 Mar 1;258(2):547–552. doi: 10.1042/bj2580547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blackard W. G., Clore J. N. Model to examine pathways of carbon flux from lactate to glucose at the first branch point in gluconeogenesis. J Biol Chem. 1988 Nov 15;263(32):16725–16730. [PubMed] [Google Scholar]
- Blackard W. G., Clore J. N., Powers L. P. A stimulatory effect of FFA on glycolysis unmasked in cells with impaired oxidative capacity. Am J Physiol. 1990 Sep;259(3 Pt 1):E451–E456. doi: 10.1152/ajpendo.1990.259.3.E451. [DOI] [PubMed] [Google Scholar]
- Blumenthal S. A. Stimulation of gluconeogenesis by palmitic acid in rat hepatocytes: evidence that this effect can be dissociated from the provision of reducing equivalents. Metabolism. 1983 Oct;32(10):971–976. doi: 10.1016/0026-0495(83)90137-3. [DOI] [PubMed] [Google Scholar]
- Claus T. H., Nyfeler F., Muenkel H. A., Burns M. G., Pilkis S. J. Changes in fructose-2,6-bisphosphate levels after glucose loading of starved rats. Biochem Biophys Res Commun. 1984 Jul 31;122(2):529–534. doi: 10.1016/s0006-291x(84)80065-0. [DOI] [PubMed] [Google Scholar]
- Ferré P., Pégorier J. P., Williamson D. H., Girard J. Interactions in vivo between oxidation of non-esterified fatty acids and gluconeogenesis in the newborn rat. Biochem J. 1979 Aug 15;182(2):593–598. doi: 10.1042/bj1820593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferré P., Satabin P., El Manoubi L., Callikan S., Girard J. Relationship between ketogenesis and gluconeogenesis in isolated hepatocytes from newborn rats. Biochem J. 1981 Nov 15;200(2):429–433. doi: 10.1042/bj2000429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Maisin L., Rider M. H. Palmitate inhibits liver glycolysis. Involvement of fructose 2,6-bisphosphate in the glucose/fatty acid cycle. Biochem J. 1988 Apr 15;251(2):541–545. doi: 10.1042/bj2510541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hue L., Sobrino F., Bosca L. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration. Biochem J. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwajima M., Golden S., Katz J., Unger R. H., Foster D. W., McGarry J. D. Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem. 1986 Feb 25;261(6):2632–2637. [PubMed] [Google Scholar]
- Kuwajima M., Newgard C. B., Foster D. W., McGarry J. D. Time course and significance of changes in hepatic fructose-2,6-bisphosphate levels during refeeding of fasted rats. J Clin Invest. 1984 Sep;74(3):1108–1111. doi: 10.1172/JCI111479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange A. J., Kummel L., el-Maghrabi M. R., Tauler A., Colosia A., Marker A., Pilkis S. J. Sequence of the 5'-flanking region of the rat 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase gene: regulation by glucocorticoids. Biochem Biophys Res Commun. 1989 Jul 31;162(2):753–760. doi: 10.1016/0006-291x(89)92374-7. [DOI] [PubMed] [Google Scholar]
- López M. P., Gómez-Lechón M. J., Castell J. V. Glucose: a more powerful modulator of fructose 2,6-bisphosphate levels than insulin in human hepatocytes. Biochim Biophys Acta. 1991 Sep 3;1094(2):200–206. doi: 10.1016/0167-4889(91)90009-m. [DOI] [PubMed] [Google Scholar]
- Maughan R. J. A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-mul blood sample. Clin Chim Acta. 1982 Jul 1;122(2):231–240. doi: 10.1016/0009-8981(82)90282-0. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- Pande S. V., Siddiqui A. W., Gattereau A. Inhibition of long-chain fatty acid activation by -bromopalmitate and phytanate. Biochim Biophys Acta. 1971 Nov 5;248(2):156–166. doi: 10.1016/0005-2760(71)90002-6. [DOI] [PubMed] [Google Scholar]
- Pilkis S. J., Chrisman T. D., El-Maghrabi M. R., Colosia A., Fox E., Pilkis J., Claus T. H. The action of insulin on hepatic fructose 2,6-bisphosphate metabolism. J Biol Chem. 1983 Feb 10;258(3):1495–1503. [PubMed] [Google Scholar]
- Pilkis S. J., el-Maghrabi M. R., Claus T. H. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics. Diabetes Care. 1990 Jun;13(6):582–599. doi: 10.2337/diacare.13.6.582. [DOI] [PubMed] [Google Scholar]
- Probst I., Schwartz P., Jungermann K. Induction in primary culture of 'gluconeogenic' and 'glycolytic' hepatocytes resembling periportal and perivenous cells. Eur J Biochem. 1982 Aug;126(2):271–278. doi: 10.1111/j.1432-1033.1982.tb06775.x. [DOI] [PubMed] [Google Scholar]
- Probst I., Unthan-Fechner K. Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes. Eur J Biochem. 1985 Dec 2;153(2):347–353. doi: 10.1111/j.1432-1033.1985.tb09309.x. [DOI] [PubMed] [Google Scholar]
- RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
- Richards C. S., Uyeda K. The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes. Biochem Biophys Res Commun. 1982 Nov 30;109(2):394–401. doi: 10.1016/0006-291x(82)91734-x. [DOI] [PubMed] [Google Scholar]
- Schuetz E. G., Li D., Omiecinski C. J., Muller-Eberhard U., Kleinman H. K., Elswick B., Guzelian P. S. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol. 1988 Mar;134(3):309–323. doi: 10.1002/jcp.1041340302. [DOI] [PubMed] [Google Scholar]
- Sorger T., Germinario R. J. A direct solubilization procedure for the determination of DNA and protein in cultured fibroblast monolayers. Anal Biochem. 1983 May;131(1):254–256. doi: 10.1016/0003-2697(83)90163-x. [DOI] [PubMed] [Google Scholar]
- Stein P. P., Hunt W. A., Johnson C. M., DeFronzo R. A., Smith J. D. Insulin resistance in uremia: an in vivo and in vitro study. Metabolism. 1989 Jun;38(6):562–567. doi: 10.1016/0026-0495(89)90217-5. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Browning E. T., Scholz R. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4607–4616. [PubMed] [Google Scholar]
- Williamson J. R., Browning E. T., Scholz R., Kreisberg R. A., Fritz I. B. Inhibition of fatty acid stimulation of gluconeogenesis by (+)-decanoylcarnitine in perfused rat liver. Diabetes. 1968 Apr;17(4):194–208. doi: 10.2337/diab.17.4.194. [DOI] [PubMed] [Google Scholar]
