Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Nov 15;288(Pt 1):145–148. doi: 10.1042/bj2880145

Evidence for dissociation of gluconeogenesis stimulated by non-esterified fatty acids and changes in fructose 2,6-bisphosphate in cultured rat hepatocytes.

J N Clore 1, J S Stillman 1, S T Helm 1, W G Blackard 1
PMCID: PMC1132091  PMID: 1445259

Abstract

In order to examine the role of fructose 2,6-bisphosphate (Fru-2,6-P2) in non-esterified-fatty-acid-stimulated gluconeogenesis, Fru-2,6-P2 levels were measured in cultured rat hepatocytes under conditions mimicking the fasted state. After addition of either 1.5 mM-palmitate or 10 nM-glucagon, [U-14C]lactate incorporation into glucose increased 2-fold, but only glucagon suppressed Fru-2,6-P2. Prevention of palmitate oxidation with a carnitine palmitoyltransferase-I inhibitor (2-bromopalmitate) diminished glucose production and Fru-2,6-P2 levels. Addition of exogenous glucose to the media increased Fru-2,6-P2 in a dose-related manner, which was further augmented by addition of palmitate. When Fru-2,6-P2 levels were examined in cells cultured under conditions mimicking the fed state (significantly higher basal Fru-2,6-P2 levels and lower glucose production), palmitate oxidation was associated with a significant fall in Fru-2,6-P2. In conclusion, the present studies have demonstrated a dissociation between fatty-acid-stimulated gluconeogenesis and changes in Fru-2,6-P2 in cultured rat hepatocytes. Further experiments suggest that the accumulation of intracellular hexose 6-phosphate as a result of fatty-acid-stimulated gluconeogenesis masks a putative inhibitory effect of fatty acids on Fru-2,6-P2 concentrations.

Full text

PDF
145

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Chowdhury M. H., Alberti K. G. Regulation of ketogenesis, gluconeogenesis and the mitochondrial redox state by dexamethasone in hepatocyte monolayer cultures. Biochem J. 1986 Nov 1;239(3):593–601. doi: 10.1042/bj2390593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betley S., Alberti K. G., Agius L. Regulation of fatty acid and carbohydrate metabolism by insulin, growth hormone and tri-iodothyronine in hepatocyte cultures from normal and hypophysectomized rats. Biochem J. 1989 Mar 1;258(2):547–552. doi: 10.1042/bj2580547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackard W. G., Clore J. N. Model to examine pathways of carbon flux from lactate to glucose at the first branch point in gluconeogenesis. J Biol Chem. 1988 Nov 15;263(32):16725–16730. [PubMed] [Google Scholar]
  4. Blackard W. G., Clore J. N., Powers L. P. A stimulatory effect of FFA on glycolysis unmasked in cells with impaired oxidative capacity. Am J Physiol. 1990 Sep;259(3 Pt 1):E451–E456. doi: 10.1152/ajpendo.1990.259.3.E451. [DOI] [PubMed] [Google Scholar]
  5. Blumenthal S. A. Stimulation of gluconeogenesis by palmitic acid in rat hepatocytes: evidence that this effect can be dissociated from the provision of reducing equivalents. Metabolism. 1983 Oct;32(10):971–976. doi: 10.1016/0026-0495(83)90137-3. [DOI] [PubMed] [Google Scholar]
  6. Claus T. H., Nyfeler F., Muenkel H. A., Burns M. G., Pilkis S. J. Changes in fructose-2,6-bisphosphate levels after glucose loading of starved rats. Biochem Biophys Res Commun. 1984 Jul 31;122(2):529–534. doi: 10.1016/s0006-291x(84)80065-0. [DOI] [PubMed] [Google Scholar]
  7. Ferré P., Pégorier J. P., Williamson D. H., Girard J. Interactions in vivo between oxidation of non-esterified fatty acids and gluconeogenesis in the newborn rat. Biochem J. 1979 Aug 15;182(2):593–598. doi: 10.1042/bj1820593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferré P., Satabin P., El Manoubi L., Callikan S., Girard J. Relationship between ketogenesis and gluconeogenesis in isolated hepatocytes from newborn rats. Biochem J. 1981 Nov 15;200(2):429–433. doi: 10.1042/bj2000429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hue L., Maisin L., Rider M. H. Palmitate inhibits liver glycolysis. Involvement of fructose 2,6-bisphosphate in the glucose/fatty acid cycle. Biochem J. 1988 Apr 15;251(2):541–545. doi: 10.1042/bj2510541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hue L., Rider M. H. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues. Biochem J. 1987 Jul 15;245(2):313–324. doi: 10.1042/bj2450313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hue L., Sobrino F., Bosca L. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6-bisphosphate concentration. Biochem J. 1984 Dec 15;224(3):779–786. doi: 10.1042/bj2240779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuwajima M., Golden S., Katz J., Unger R. H., Foster D. W., McGarry J. D. Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem. 1986 Feb 25;261(6):2632–2637. [PubMed] [Google Scholar]
  13. Kuwajima M., Newgard C. B., Foster D. W., McGarry J. D. Time course and significance of changes in hepatic fructose-2,6-bisphosphate levels during refeeding of fasted rats. J Clin Invest. 1984 Sep;74(3):1108–1111. doi: 10.1172/JCI111479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lange A. J., Kummel L., el-Maghrabi M. R., Tauler A., Colosia A., Marker A., Pilkis S. J. Sequence of the 5'-flanking region of the rat 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase gene: regulation by glucocorticoids. Biochem Biophys Res Commun. 1989 Jul 31;162(2):753–760. doi: 10.1016/0006-291x(89)92374-7. [DOI] [PubMed] [Google Scholar]
  15. López M. P., Gómez-Lechón M. J., Castell J. V. Glucose: a more powerful modulator of fructose 2,6-bisphosphate levels than insulin in human hepatocytes. Biochim Biophys Acta. 1991 Sep 3;1094(2):200–206. doi: 10.1016/0167-4889(91)90009-m. [DOI] [PubMed] [Google Scholar]
  16. Maughan R. J. A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate and acetoacetate on a single 20-mul blood sample. Clin Chim Acta. 1982 Jul 1;122(2):231–240. doi: 10.1016/0009-8981(82)90282-0. [DOI] [PubMed] [Google Scholar]
  17. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  18. Pande S. V., Siddiqui A. W., Gattereau A. Inhibition of long-chain fatty acid activation by -bromopalmitate and phytanate. Biochim Biophys Acta. 1971 Nov 5;248(2):156–166. doi: 10.1016/0005-2760(71)90002-6. [DOI] [PubMed] [Google Scholar]
  19. Pilkis S. J., Chrisman T. D., El-Maghrabi M. R., Colosia A., Fox E., Pilkis J., Claus T. H. The action of insulin on hepatic fructose 2,6-bisphosphate metabolism. J Biol Chem. 1983 Feb 10;258(3):1495–1503. [PubMed] [Google Scholar]
  20. Pilkis S. J., el-Maghrabi M. R., Claus T. H. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis. From metabolites to molecular genetics. Diabetes Care. 1990 Jun;13(6):582–599. doi: 10.2337/diacare.13.6.582. [DOI] [PubMed] [Google Scholar]
  21. Probst I., Schwartz P., Jungermann K. Induction in primary culture of 'gluconeogenic' and 'glycolytic' hepatocytes resembling periportal and perivenous cells. Eur J Biochem. 1982 Aug;126(2):271–278. doi: 10.1111/j.1432-1033.1982.tb06775.x. [DOI] [PubMed] [Google Scholar]
  22. Probst I., Unthan-Fechner K. Activation of glycolysis by insulin with a sequential increase of the 6-phosphofructo-2-kinase activity, fructose-2,6-bisphosphate level and pyruvate kinase activity in cultured rat hepatocytes. Eur J Biochem. 1985 Dec 2;153(2):347–353. doi: 10.1111/j.1432-1033.1985.tb09309.x. [DOI] [PubMed] [Google Scholar]
  23. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  24. Richards C. S., Uyeda K. The effect of insulin and glucose on fructose-2,6-P2 in hepatocytes. Biochem Biophys Res Commun. 1982 Nov 30;109(2):394–401. doi: 10.1016/0006-291x(82)91734-x. [DOI] [PubMed] [Google Scholar]
  25. Schuetz E. G., Li D., Omiecinski C. J., Muller-Eberhard U., Kleinman H. K., Elswick B., Guzelian P. S. Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol. 1988 Mar;134(3):309–323. doi: 10.1002/jcp.1041340302. [DOI] [PubMed] [Google Scholar]
  26. Sorger T., Germinario R. J. A direct solubilization procedure for the determination of DNA and protein in cultured fibroblast monolayers. Anal Biochem. 1983 May;131(1):254–256. doi: 10.1016/0003-2697(83)90163-x. [DOI] [PubMed] [Google Scholar]
  27. Stein P. P., Hunt W. A., Johnson C. M., DeFronzo R. A., Smith J. D. Insulin resistance in uremia: an in vivo and in vitro study. Metabolism. 1989 Jun;38(6):562–567. doi: 10.1016/0026-0495(89)90217-5. [DOI] [PubMed] [Google Scholar]
  28. Williamson J. R., Browning E. T., Scholz R. Control mechanisms of gluconeogenesis and ketogenesis. I. Effects of oleate on gluconeogenesis in perfused rat liver. J Biol Chem. 1969 Sep 10;244(17):4607–4616. [PubMed] [Google Scholar]
  29. Williamson J. R., Browning E. T., Scholz R., Kreisberg R. A., Fritz I. B. Inhibition of fatty acid stimulation of gluconeogenesis by (+)-decanoylcarnitine in perfused rat liver. Diabetes. 1968 Apr;17(4):194–208. doi: 10.2337/diab.17.4.194. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES