Abstract
The mechanism whereby gastrin-type receptor and muscarinic M3-type receptor regulate free intracellular Ca2+ concentration ([Ca2+]i) was studied in rabbit gastric parietal cells stimulated by either gastrin or carbachol. Both agonists induced a biphasic [Ca2+]i response: a transient [Ca2+]i rise, followed by a sustained steady state depending on extracellular Ca2+. Gastrin and carbachol also caused a rapid and transient increase in Mn2+ influx (a tracer for bivalent-cation entry). Pre-stimulation of cells with one agonist drastically decreased both [Ca2+]i increase and Mn2+ influx induced by the other. Neither diltiazem nor pertussistoxin treatment had any effect on agonist-stimulated Mn2+ entry. Thapsigargin, a Ca(2+)-pump inhibitor, induced a biphasic [Ca2+]i increase, and enhanced the rate of Mn2+ entry. Preincubation of cells with thapsigargin inhibits the [Ca2+]i increase as well as Mn2+ entry stimulated by gastrin or by carbachol. Thapsigargin induced a weak but significant increase in Ins(1,4,5)P3 content, but this agent had no effect on the agonist-evoked Ins(1,4,5)P3 response. In permeabilized parietal cells, Ins(1,4,5)P3 and caffeine caused an immediate Ca2+ release from intracellular pools, followed by a reloading of Ca2+ pools which can be prevented in the presence of thapsigargin. We conclude that (i) gastrin and carbachol mobilize common Ca2+ intracellular stores, (ii) Ca2+ permeability secondary to receptor activation involves neither a voltage-sensitive Ca2+ channel nor a GTP-binding protein from the G1 family, and (iii) agonists regulate common Ca2+ channels in depleting intracellular Ca2+ stores.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez J., Montero M., García-Sancho J. Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991 Feb 15;274(Pt 1):193–197. doi: 10.1042/bj2740193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J. Calcium oscillations. J Biol Chem. 1990 Jun 15;265(17):9583–9586. [PubMed] [Google Scholar]
- Brown A. M., Birnbaumer L. Ionic channels and their regulation by G protein subunits. Annu Rev Physiol. 1990;52:197–213. doi: 10.1146/annurev.ph.52.030190.001213. [DOI] [PubMed] [Google Scholar]
- Byron K. L., Babnigg G., Villereal M. L. Bradykinin-induced Ca2+ entry, release, and refilling of intracellular Ca2+ stores. Relationships revealed by image analysis of individual human fibroblasts. J Biol Chem. 1992 Jan 5;267(1):108–118. [PubMed] [Google Scholar]
- Chang R. S., Lotti V. J. Biochemical and pharmacological characterization of an extremely potent and selective nonpeptide cholecystokinin antagonist. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4923–4926. doi: 10.1073/pnas.83.13.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changya L., Gallacher D. V., Irvine R. F., Potter B. V., Petersen O. H. Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the Ca2+-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J Membr Biol. 1989 Jul;109(1):85–93. doi: 10.1007/BF01870793. [DOI] [PubMed] [Google Scholar]
- Chew C. S., Brown M. R. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues in parietal and chief cells isolated from rabbit gastric mucosa. Biochim Biophys Acta. 1986 Aug 29;888(1):116–125. doi: 10.1016/0167-4889(86)90077-7. [DOI] [PubMed] [Google Scholar]
- Chew C. S. Differential effects of extracellular calcium removal and nonspecific effects of Ca2+ antagonists on acid secretory activity in isolated gastric glands. Biochim Biophys Acta. 1985 Sep 30;846(3):370–378. doi: 10.1016/0167-4889(85)90008-4. [DOI] [PubMed] [Google Scholar]
- Chew C. S., Petropoulos A. C. Thapsigargin potentiates histamine-stimulated HCl secretion in gastric parietal cells but does not mimic cholinergic responses. Cell Regul. 1991 Jan;2(1):27–39. doi: 10.1091/mbc.2.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choquet A., Leonard A., Magous R., Bali J. P. Intracellular coupling of prostaglandin inhibition of acid secretion in isolated rabbit gastric parietal cells. Biochem Pharmacol. 1990 Jun 15;39(12):1905–1911. doi: 10.1016/0006-2952(90)90608-n. [DOI] [PubMed] [Google Scholar]
- Ely J. A., Ambroz C., Baukal A. J., Christensen S. B., Balla T., Catt K. J. Relationship between agonist- and thapsigargin-sensitive calcium pools in adrenal glomerulosa cells. Thapsigargin-induced Ca2+ mobilization and entry. J Biol Chem. 1991 Oct 5;266(28):18635–18641. [PubMed] [Google Scholar]
- Felder C. C., Poulter M. O., Wess J. Muscarinic receptor-operated Ca2+ influx in transfected fibroblast cells is independent of inositol phosphates and release of intracellular Ca2+. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):509–513. doi: 10.1073/pnas.89.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillon G., Balestre M. N., Chouinard L., Gallo-Payet N. Involvement of distinct G-proteins in the action of vasopressin on rat glomerulosa cells. Endocrinology. 1990 Mar;126(3):1699–1708. doi: 10.1210/endo-126-3-1699. [DOI] [PubMed] [Google Scholar]
- Hansen C. A., Yang L. J., Williamson J. R. Mechanisms of receptor-mediated Ca2+ signaling in rat hepatocytes. J Biol Chem. 1991 Oct 5;266(28):18573–18579. [PubMed] [Google Scholar]
- Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuno M., Gardner P. Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature. 1987 Mar 19;326(6110):301–304. doi: 10.1038/326301a0. [DOI] [PubMed] [Google Scholar]
- Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
- Leonard A., Cuq P., Magous R., Bali J. P. M3-subtype muscarinic receptor that controls intracellular calcium release and inositol phosphate accumulation in gastric parietal cells. Biochem Pharmacol. 1991 Jul 25;42(4):839–845. doi: 10.1016/0006-2952(91)90044-6. [DOI] [PubMed] [Google Scholar]
- Leonard A., Guillon G., Choquet A., Bali J. P. Calcium involvement in the muscarinic response of the gastric parietal cell. Cell Signal. 1990;2(2):177–186. doi: 10.1016/0898-6568(90)90021-2. [DOI] [PubMed] [Google Scholar]
- Lotti V. J., Chang R. S. A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365,260. Eur J Pharmacol. 1989 Mar 21;162(2):273–280. doi: 10.1016/0014-2999(89)90290-2. [DOI] [PubMed] [Google Scholar]
- Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
- Mason M. J., Garcia-Rodriguez C., Grinstein S. Coupling between intracellular Ca2+ stores and the Ca2+ permeability of the plasma membrane. Comparison of the effects of thapsigargin, 2,5-di-(tert-butyl)-1,4-hydroquinone, and cyclopiazonic acid in rat thymic lymphocytes. J Biol Chem. 1991 Nov 5;266(31):20856–20862. [PubMed] [Google Scholar]
- Meldolesi J., Clementi E., Fasolato C., Zacchetti D., Pozzan T. Ca2+ influx following receptor activation. Trends Pharmacol Sci. 1991 Aug;12(8):289–292. doi: 10.1016/0165-6147(91)90577-f. [DOI] [PubMed] [Google Scholar]
- Merritt J. E., Hallam T. J. Platelets and parotid acinar cells have different mechanisms for agonist-stimulated divalent cation entry. J Biol Chem. 1988 May 5;263(13):6161–6164. [PubMed] [Google Scholar]
- Merritt J. E., Jacob R., Hallam T. J. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J Biol Chem. 1989 Jan 25;264(3):1522–1527. [PubMed] [Google Scholar]
- Negulescu P. A., Machen T. E. Intracellular Ca regulation during secretagogue stimulation of the parietal cell. Am J Physiol. 1988 Jan;254(1 Pt 1):C130–C140. doi: 10.1152/ajpcell.1988.254.1.C130. [DOI] [PubMed] [Google Scholar]
- Negulescu P. A., Machen T. E. Release and reloading of intracellular Ca stores after cholinergic stimulation of the parietal cell. Am J Physiol. 1988 Apr;254(4 Pt 1):C498–C504. doi: 10.1152/ajpcell.1988.254.4.C498. [DOI] [PubMed] [Google Scholar]
- Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
- Petersen O. H., Wakui M. Oscillating intracellular Ca2+ signals evoked by activation of receptors linked to inositol lipid hydrolysis: mechanism of generation. J Membr Biol. 1990 Nov;118(2):93–105. doi: 10.1007/BF01868467. [DOI] [PubMed] [Google Scholar]
- Pfeiffer A., Rochlitz H., Noelke B., Tacke R., Moser U., Mutschler E., Lambrecht G. Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type. Gastroenterology. 1990 Jan;98(1):218–222. doi: 10.1016/0016-5085(90)91314-v. [DOI] [PubMed] [Google Scholar]
- Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
- Rink T. J. Receptor-mediated calcium entry. FEBS Lett. 1990 Aug 1;268(2):381–385. doi: 10.1016/0014-5793(90)81290-5. [DOI] [PubMed] [Google Scholar]
- Roche S., Bali J. P., Galleyrand J. C., Magous R. Characterization of a gastrin-type receptor on rabbit gastric parietal cells using L365,260 and L364,718. Am J Physiol. 1991 Feb;260(2 Pt 1):G182–G188. doi: 10.1152/ajpgi.1991.260.2.G182. [DOI] [PubMed] [Google Scholar]
- Roche S., Bali J. P., Magous R. Involvement of a pertussis toxin-sensitive G protein in the action of gastrin on gastric parietal cells. Biochim Biophys Acta. 1990 Dec 10;1055(3):287–294. doi: 10.1016/0167-4889(90)90045-f. [DOI] [PubMed] [Google Scholar]
- Roche S., Gusdinar T., Bali J. P., Magous R. Biphasic kinetics of inositol 1,4,5-trisphosphate accumulation in gastrin-stimulated parietal cells. Effects of pertussis toxin and extracellular calcium. FEBS Lett. 1991 Apr 22;282(1):147–151. doi: 10.1016/0014-5793(91)80465-f. [DOI] [PubMed] [Google Scholar]
- Roche S., Gusdinar T., Bali J. P., Magous R. Relationship between inositol 1,4,5-trisphosphate mass level and [14C]aminopyrine uptake in gastrin-stimulated parietal cells. Mol Cell Endocrinol. 1991 May;77(1-3):109–113. doi: 10.1016/0303-7207(91)90064-y. [DOI] [PubMed] [Google Scholar]
- Roche S., Magous R. Gastrin and CCK-8 induce inositol 1,4,5-trisphosphate formation in rabbit gastric parietal cells. Biochim Biophys Acta. 1989 Dec 14;1014(3):313–318. doi: 10.1016/0167-4889(89)90228-0. [DOI] [PubMed] [Google Scholar]
- Sage S. O., Reast R., Rink T. J. ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J. 1990 Feb 1;265(3):675–680. doi: 10.1042/bj2650675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stauderman K. A., Pruss R. M. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. J Biol Chem. 1989 Nov 5;264(31):18349–18355. [PubMed] [Google Scholar]
- Takemura H., Hughes A. R., Thastrup O., Putney J. W., Jr Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989 Jul 25;264(21):12266–12271. [PubMed] [Google Scholar]
- Takemura H., Putney J. W., Jr Capacitative calcium entry in parotid acinar cells. Biochem J. 1989 Mar 1;258(2):409–412. doi: 10.1042/bj2580409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsunoda Y., Takeda H., Asaka M., Nakagaki I., Sasaki S. Initial and sustained calcium mobilizations in the parietal cell during stimulations with gastrin, inositol trisphosphate, phorbol ester and exogenous diacylglycerol. FEBS Lett. 1988 May 9;232(1):83–90. doi: 10.1016/0014-5793(88)80391-0. [DOI] [PubMed] [Google Scholar]
- Tsunoda Y., Yodozawa S., Tashiro Y. Fluorescence digital image analysis of the inositol trisphosphate-mediated calcium transient in single permeabilized parietal cells. FEBS Lett. 1988 Apr 11;231(1):29–35. doi: 10.1016/0014-5793(88)80696-3. [DOI] [PubMed] [Google Scholar]
- Tsunoda Y., Yodozawa S., Tashiro Y. Heterogenous distribution of free calcium and propagation of calcium transient in gastric parietal cells revealed by digital imaging microscopy. J Histochem Cytochem. 1989 Jul;37(7):999–1005. doi: 10.1177/37.7.2732461. [DOI] [PubMed] [Google Scholar]
- Wilkes J. M., Kajimura M., Scott D. R., Hersey S. J., Sachs G. Muscarinic responses of gastric parietal cells. J Membr Biol. 1991 Jun;122(2):97–110. doi: 10.1007/BF01872634. [DOI] [PubMed] [Google Scholar]
- Williamson J. R., Monck J. R. Hormone effects on cellular Ca2+ fluxes. Annu Rev Physiol. 1989;51:107–124. doi: 10.1146/annurev.ph.51.030189.000543. [DOI] [PubMed] [Google Scholar]
