Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jan 15;289(Pt 2):497–501. doi: 10.1042/bj2890497

Activation of protein kinase C partially alleviates noradrenaline inhibition of insulin secretion.

S J Persaud 1, P M Jones 1, S L Howell 1
PMCID: PMC1132195  PMID: 7678735

Abstract

The sympathetic neurotransmitter noradrenaline (NA) fully inhibited both phases of glucose-stimulated insulin secretion from rat islets of Langerhans. The secretory response to the protein kinase C (PKC) activator, 4 beta-phorbol myristate acetate (4 beta PMA), in the absence of exogenous glucose was also abolished by NA. However, at 20 mM glucose 4 beta PMA partially alleviated the inhibitory effect of NA both on insulin release and on cyclic AMP generation. Inhibition of insulin release by NA, albeit much decreased, was still observed in the presence of maximal stimulatory concentrations of both 4 beta PMA and dibutyryl cyclic AMP. The relieving effect of 4 beta PMA on the inhibition of insulin secretion by NA was not overcome by the competitive antagonist of cyclic AMP-dependent protein kinase, Rp-adenosine 3',5'-cyclic phosphorothioate. Down-regulation of islet PKC activity by overnight exposure to 4 beta PMA did not affect the inhibitory capacity of NA. These results suggest that NA inhibits insulin release independently of interaction with PKC, but that activation of this enzyme decreases the inhibitory effect of NA at stimulatory concentrations of glucose. This protective effect of 4 beta PMA could not be attributed to a decrease in NA inhibition of cyclic AMP generation.

Full text

PDF
497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axen K. V., Schubart U. K., Blake A. D., Fleischer N. Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets. J Clin Invest. 1983 Jul;72(1):13–21. doi: 10.1172/JCI110951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertrand G., Nenquin M., Henquin J. C. Comparison of the inhibition of insulin release by activation of adenosine and alpha 2-adrenergic receptors in rat beta-cells. Biochem J. 1989 Apr 1;259(1):223–228. doi: 10.1042/bj2590223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bjaaland T., Jones P. M., Howell S. L. Role of intracellular mediators in glucagon secretion: studies using intact and electrically permeabilized rat islets of Langerhans. J Mol Endocrinol. 1988 Nov;1(3):171–178. doi: 10.1677/jme.0.0010171. [DOI] [PubMed] [Google Scholar]
  4. Blachier F., Segura M. C., Malaisse W. J. Unresponsiveness of phospholipase C to the regulatory proteins Ns and Ni in pancreatic islets. Res Commun Chem Pathol Pharmacol. 1987 Mar;55(3):335–355. [PubMed] [Google Scholar]
  5. Bozem M., Nenquin M., Henquin J. C. The ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic B-cells: studies with a phorbol ester. Endocrinology. 1987 Sep;121(3):1025–1033. doi: 10.1210/endo-121-3-1025. [DOI] [PubMed] [Google Scholar]
  6. Harper J. F., Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res. 1975;1(4):207–218. [PubMed] [Google Scholar]
  7. Harrison D. E., Ashcroft S. J., Christie M. R., Lord J. M. Protein phosphorylation in the pancreatic B-cell. Experientia. 1984 Oct 15;40(10):1075–1084. doi: 10.1007/BF01971454. [DOI] [PubMed] [Google Scholar]
  8. Howell S. L., Montague W. Adenylate cyclase activity in isolated rat islets of Langerhans. Effects of agents which alter rates of insulin secretion. Biochim Biophys Acta. 1973 Aug 17;320(1):44–52. doi: 10.1016/0304-4165(73)90163-3. [DOI] [PubMed] [Google Scholar]
  9. Jakobs K. H., Bauer S., Watanabe Y. Modulation of adenylate cyclase of human platelets by phorbol ester. Impairment of the hormone-sensitive inhibitory pathway. Eur J Biochem. 1985 Sep 2;151(2):425–430. doi: 10.1111/j.1432-1033.1985.tb09119.x. [DOI] [PubMed] [Google Scholar]
  10. Joffre M., Debuyser A. Glucose- and concentration-dependence of noradrenalin effects on electrical activity in mouse pancreatic beta cells. Biochim Biophys Acta. 1990 May 2;1052(2):285–292. doi: 10.1016/0167-4889(90)90223-z. [DOI] [PubMed] [Google Scholar]
  11. Johnson J. A., Goka T. J., Clark R. B. Phorbol ester-induced augmentation and inhibition of epinephrine-stimulated adenylate cyclase in S49 lymphoma cells. J Cyclic Nucleotide Protein Phosphor Res. 1986;11(3):199–215. [PubMed] [Google Scholar]
  12. Jones P. M., Fyles J. M., Persaud S. J., Howell S. L. Catecholamine inhibition of Ca2+-induced insulin secretion from electrically permeabilised islets of Langerhans. FEBS Lett. 1987 Jul 13;219(1):139–144. doi: 10.1016/0014-5793(87)81206-1. [DOI] [PubMed] [Google Scholar]
  13. Jones P. M., Salmon D. M., Howell S. L. Protein phosphorylation in electrically permeabilized islets of Langerhans. Effects of Ca2+, cyclic AMP, a phorbol ester and noradrenaline. Biochem J. 1988 Sep 1;254(2):397–403. doi: 10.1042/bj2540397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
  15. Kuo W. N., Hodgins D. S., Kuo J. F. Adenylate cyclase in islets of Langerhans. Isolation of islets and regulation of adenylate cyclase activity by various hormones and agents. J Biol Chem. 1973 Apr 25;248(8):2705–2711. [PubMed] [Google Scholar]
  16. Laychock S. G., Bilgin S. Alpha 2-adrenergic inhibition of pancreatic islet glucose utilization is mediated by an inhibitory guanine nucleotide regulatory protein. FEBS Lett. 1987 Jun 22;218(1):7–10. doi: 10.1016/0014-5793(87)81007-4. [DOI] [PubMed] [Google Scholar]
  17. Malaisse W. J., Sener A., Herchuelz A., Carpinelli A. R., Poloczek P., Winand J., Castagna M. Insulinotropic effect of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in rat pancreatic islets. Cancer Res. 1980 Oct;40(10):3827–3831. [PubMed] [Google Scholar]
  18. Montague W., Morgan N. G., Rumford G. M., Prince C. A. Effect of glucose on polyphosphoinositide metabolism in isolated rat islets of Langerhans. Biochem J. 1985 Apr 15;227(2):483–489. doi: 10.1042/bj2270483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morgan N. G., Montague W. Studies on the mechanism of inhibition of glucose-stimulated insulin secretion by noradrenaline in rat islets of Langerhans. Biochem J. 1985 Mar 1;226(2):571–576. doi: 10.1042/bj2260571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Persaud S. J., Jones P. M., Howell S. L. Effects of Bordetella pertussis toxin on catecholamine inhibition of insulin release from intact and electrically permeabilized rat islets. Biochem J. 1989 Mar 15;258(3):669–675. doi: 10.1042/bj2580669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Persaud S. J., Jones P. M., Howell S. L. Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Commun. 1990 Dec 31;173(3):833–839. doi: 10.1016/s0006-291x(05)80862-9. [DOI] [PubMed] [Google Scholar]
  22. Persaud S. J., Jones P. M., Sugden D., Howell S. L. The role of protein kinase C in cholinergic stimulation of insulin secretion from rat islets of Langerhans. Biochem J. 1989 Dec 15;264(3):753–758. doi: 10.1042/bj2640753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prentki M., Matschinsky F. M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987 Oct;67(4):1185–1248. doi: 10.1152/physrev.1987.67.4.1185. [DOI] [PubMed] [Google Scholar]
  24. Rorsman P., Bokvist K., Ammälä C., Arkhammar P., Berggren P. O., Larsson O., Wåhlander K. Activation by adrenaline of a low-conductance G protein-dependent K+ channel in mouse pancreatic B cells. Nature. 1991 Jan 3;349(6304):77–79. doi: 10.1038/349077a0. [DOI] [PubMed] [Google Scholar]
  25. Tamagawa T., Niki H., Niki A. Insulin release independent of a rise in cytosolic free Ca2+ by forskolin and phorbol ester. FEBS Lett. 1985 Apr 22;183(2):430–432. doi: 10.1016/0014-5793(85)80825-5. [DOI] [PubMed] [Google Scholar]
  26. Thams P., Capito K., Hedeskov C. J. Stimulation by glucose of cyclic AMP accumulation in mouse pancreatic islets is mediated by protein kinase C. Biochem J. 1988 Jul 1;253(1):229–234. doi: 10.1042/bj2530229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ullrich S., Wollheim C. B. GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. Lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem. 1988 Jun 25;263(18):8615–8620. [PubMed] [Google Scholar]
  28. Wolf B. A., Turk J., Sherman W. R., McDaniel M. L. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem. 1986 Mar 15;261(8):3501–3511. [PubMed] [Google Scholar]
  29. Wollheim C. B., Sharp G. W. Regulation of insulin release by calcium. Physiol Rev. 1981 Oct;61(4):914–973. doi: 10.1152/physrev.1981.61.4.914. [DOI] [PubMed] [Google Scholar]
  30. Yamazaki S., Katada T., Ui M. Alpha 2-adrenergic inhibition of insulin secretion via interference with cyclic AMP generation in rat pancreatic islets. Mol Pharmacol. 1982 May;21(3):648–653. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES